
Refining Incomplete Planning Domain Models Through Plan Traces

Hankz Hankui Zhuoa, Tuan Nguyenb, and Subbarao Kambhampatib

aDept. of Computer Science, Sun Yat-sen University, Guangzhou, China
zhuohank@mail.sysu.edu.cn

bDept. of Computer Science and Engineering, Arizona State University, US
{natuan,rao}@asu.edu

Abstract

Most existing work on learning planning models
assumes that the entire model needs to be learned
from scratch. A more realistic situation is that the
planning agent has an incomplete model which it
needs to refine through learning. In this paper we
propose and evaluate a method for doing this. Our
method takes as input an incomplete model (with
missing preconditions and effects in the actions),
as well as a set of plan traces that are known to be
correct. It outputs a “refined” model that not only
captures additional precondition/effect knowledge
about the given actions, but also “macro actions”.
We use a MAX-SAT framework for learning, where
the constraints are derived from the executability
of the given plan traces, as well as the precondi-
tions/effects of the given incomplete model. Unlike
traditional macro-action learners which use macros
to increase the efficiency of planning (in the con-
text of a complete model), our motivation for learn-
ing macros is to increase the accuracy (robust-
ness) of the plans generated with the refined model.
We demonstrate the effectiveness of our approach
through a systematic empirical evaluation.

1 Introduction

Most work in planning assumes that complete domain models
are given as input in order to synthesize plans. However, there
is increasing awareness that building domain models at any
level of completeness presents steep challenges for domain
creators. Indeed, recent work in web-service composition (c.f.
[Bertoli et al., 2010; Hoffmann et al., 2007]) and work-flow
management (c.f. [Blythe et al., 2004]) suggest that depen-
dence on complete models can well be the real bottle-neck
inhibiting applications of current planning technology.

Incomplete models present two challenges: how to pro-
duce robust plans despite partial knowledge [Kambham-
pati, 2007; Nguyen et al., 2011; Weber and Bryce, 2011;
Garland and Lesh, 2002] and how to improve the models over
time through learning. It is this later challenge–refining in-
complete models, that is the focus of the current paper. Al-
though there has been some work on learning planning mod-
els from plan traces (c.f. [Yang et al., 2007; Zhuo et al., 2010;

Zettlemoyer et al., 2005]), most of it is aimed at learning plan-
ning models from scratch. In contrast, we are interested in
the problem of refining an incomplete model through learn-
ing. In this paper we propose and evaluate a novel method
for doing this. Our method takes as input a partially specified
domain model (with missing preconditions and effects in the
actions), as well as a set of plan traces that are known to be
correct. It outputs a “refined” model that not only captures ad-
ditional precondition/effect knowlege about the given actions,
but also “macro actions.” In the first phase, we mine candidate
macros mined from the plan traces, and in the second phase
we learn precondition/effect models both for the primitive ac-
tions and the macro actions. Finally we use the refined model
to do planning (where the planner is biased towards using the
learned macro actions where possible).

We use the MAX-SAT framework for learning, where the
constraints are derived from the executability of the given
plan traces, as well as the preconditions/effects of the given
incomplete model [Yang et al., 2007; Zhuo et al., 2010]. Un-
like traditional macro-action learners which use macros to in-
crease the efficiency of planning (in the context of a complete
model), our motivation for learning macros is to increase the
accuracy (robustness) of the plans generated with the refined
model. We demonstrate the effectiveness of our approach,
called RIM which stands for Refining Incomplete planning
domain Models through plan traces, and present a systematic
empirical evaluation that demonstrates how RIM exploits the
incomplete models as well as learned macro actions.

We organize the paper as follows. We first review related
work, and then present the formal details of our framework.
After that, we give a detailed description of RIM algorithm.
Finally, we evaluate RIM in three planning domains and con-
clude our work with a discussion on future work.

2 Related Work

As we mentioned, there has been prior work on action model
learning [Yang et al., 2007; Zhuo et al., 2010; Zettlemoyer
et al., 2005], but much of it focuses on from-scratch learn-
ing. We focus on learning in the presence of an existing in-
complete model. Starting from STRIPS [Fikes et al., 1972],
macro-operator learning has been a staple in automated plan-
ning (c.f. [Korf, 1985; Iba, 1989; Coles and Smith, 2007;
Botea et al., 2005; Newton et al., 2007]). All these efforts
however assume that the learner has access to a complete do-
main model, and are motivated mainly by the desire to re-

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

2451

duce the time taken for planning. In contrast, we cull and
use macro-operators to increase the accuracy of the incom-
plete model. In this sense, our work is similar in spirit to the
original case-based planning systems such as CHEF [Ham-
mond, 1989], and PLEXUS [Alterman, 1986] that try to use
plan traces (“cases”) to make-up for the lack of complete do-
main models. The main difference is that while case-based
planners focussed on case-level transfer, our approach takes a
more global view of first refining the incomplete model using
the learned models of primitive and macro actions.

3 Preliminaries and Problem Definition

A complete STRIPS domain is defined as a tuple M =
〈R,A〉, where R is a set of predicates with typed objects
and A is a set of action models. Each action model is a
quadruple 〈a, PRE(a),ADD(a),DEL(a)〉, where a is an ac-
tion name with zero or more parameters, PRE(a) is a pre-
condition list specifying the conditions under which a can be
applied, ADD(a) is an adding list and DEL(a) is a deleting
list indicating the effects of a. We denote RO as the set of
propositions instantiated from R with respect to a set of typed
objects O. Given M and O, we define a planning problem as
P = 〈O, s0, g〉, where s0 ⊆ RO is an initial state, g ⊆ RO

are goal propositions. A solution plan to P with respect to
model M is a sequence of actions p = 〈a1, a2, . . . , an〉 that
achieves goal g starting from s0.

An action model 〈a, PRE(a),ADD(a),DEL(a)〉 is consid-
ered incomplete if there are predicates missing in PRE(a),
ADD(a), or DEL(a). We denote Ã as a set of incomplete
action models, R̃ the set of predicates used in the specifica-
tion of Ã, and thus M̃ = 〈R̃, Ã〉 the corresponding incom-
plete STRIPS domain. Note that although action models in Ã
might have incomplete preconditions and effects, we assume
that no action model in A is missing, and that preconditions
and effects specified in Ã are correct.

We denote T as a set of plan traces, where each provides
a successful plan pi for problem Pi = 〈Oi, si0, g

i〉. A macro-
operator, a set of which is denoted by O, is defined by a tu-
ple 〈o, α(o), PRE(o),ADD(o),DEL(o)〉, where o is its name
with zero or more parameters, α(o) is an action sequence that
constitutes o, PRE(o), ADD(o), and DEL(o) respectively are
the precondition, add and delete lists of o. A tuple 〈o, α(o)〉
is called a macro-operator schema.

In this work, we are given a triple 〈P̃,M̃, T 〉 of planning
problem P̃ = 〈O, so, g〉, incomplete domain M̃ and set of
successful plan traces T . Our algorithm first refines the do-
main M̃ with more complete action models and new macro-
operators, resulting in the refined domain M̂R, and then use
it to solve the problem P̃ . We note that the model refinement
needs to be done only once, and the refined domain model
M̂R could be used to solve new planning problems.

An example input of our planning problem in blocks1

is shown in Figure 1, which is composed of three parts:
incomplete action models (Figure 1(a)), initial state s0 and
goal g (Figure 1(b)), and a plan example set (Figure 1(c)). In

1http://www.cs.toronto.edu/aips2000/

Figure 1(a), the dark parts indicate the missing predicates. In
Figure 1(c), p1 and p2 are two plan traces, where initial states
and goals are bracketed. An example output is a solution
to the planning problem given in Figure 1, i.e., “(unstack
C A)(putdown C)(pickup B)(stack B A)(pickup
C)(stack C B)(pickup D)(stack D C) ”.

pickup (?x - block)

pre: (handempty) (clear ?x) (ontable ?x)

eff: (holding ?x) (not (handempty)) (not (clear ?x)) (not (ontable ?x))

putdown (?x - block)

pre: (holding ?x)

eff: (ontable ?x) (clear ?x) (handempty) (not (holding ?x))

unstack (?x ?y block)

pre: (handempty) (on ?x ?y) (clear ?x)

eff: (holding ?x) (clear ?x) (not (clear ?x)) (not (on ?x ?y)) (not (handempty))

stack (?x ?y - block)

pre: (clear ?y) (holding ?x)

eff: (on ?x ?y) (clear ?x) (handempty) (not (clear ?y)) (not (holding ?x))

p1: {(clear b1) (clear b2) (clear b3) (clear b4) (ontable b1) (ontable b2)

(ontable b3) (ontable b4) (handempty)}, pickup(b3) stack(b3 b2) pickup(b1)

stack(b1 b3) pickup(b4) stack(b4 b1), {(on b4 b1) (on b1 b3) (on b3 b2)}

p2: {(clear b1) (ontable b2) (on b1 b3) (on b3 b2) (handempty)}, unstack(b1

b3) putdown(b1) unstack(b3 b2) putdown(b3) pickup(b1) stack(b1 b2)

pickup(b3) stack(b3 b1), {(on b3 b1) (on b1 b2)}

p3:

g: (on D C)

(on C B)

(on B A)

C

A

B

Ds0: (on C A)

(ontable A)

(clear C)

(ontable B) (ontable D)

(clear B) (clear D) (handempty)

C

A B D

(a). Incomplete action models

(b). Initial state s0 and goal g

(c). Plan examples

Figure 1: An input example of RIM for the blocks domain

4 The RIM Approach

Our RIM approach consists of two phases. In the first phase,
we learn macro-operators and action models with the given
plan traces T and the incomplete domain M̃. In the sec-
ond phase, we exploit the learned macro-operators and action
models in solving new planning problems. In the subsequent
subsections, we first address the learning phase in detail, and
then describe the planning phase briefly.

Our learning framework (the first phase) can be found in
Algorithm 1. It begins with the step of collecting sets of pred-
icates P , action schemas A and macro-operator schemas O

from incomplete action models Ã and plan traces T . In the
next two steps, it constructs sets of soft and hard constraints
to ensure that the learned domain model can best explain the
input plan traces and incomplete action models. Finally, we
solve these constraints using a weighted MAX-SAT solver to
obtain sets of macro-operators and (refined) action models.

Algorithm 1 Phase I: refining domain models

Input: incomplete action models Ã, and plan traces T .
Output: macro-operators O and action models A.

1: build sets of predicates, action schemas and macro-
operator schemas: (P,A,O)=build schemas(Ã, T);

2: build soft constraints: state constraints, pair constraints;
3: build hard constraints: macro constraints, action con-

straints, plan constraints and incompleteness constraints;
4: solve all constraints, and build O and A;
5: return O and A;

2452

4.1 Generating Predicates, Action and
Macro-operator Schemas

It is straightforward to construct the set of predicates P . We
first collect all predicates R̃ used in the given incomplete
action models Ã, and view them as the initial set of predi-
cates P . We then scan each proposition in plan traces and put
its corresponding predicates (by replacing parameters of the
proposition with variables) in P if it is not in P . Likewise, we
build a set of action schemas A by scanning all the incomplete
action models and plan traces.

There are no easy ways to construct macro-operator
schemas, since they neither exist in the plan traces nor
in the incomplete action models. We propose to construct
macro-operator schemas with the help of frequent pattern
mining techniques and incomplete action models. In partic-
ular, we consider an action subsequence that satisfies the
following two conditions to be a macro-operator schema:
(1) it frequently occurs in plan traces, the insight of which
implicitly suggests they are more likely to be used in fu-
ture problem solving; (2) its actions have strong connec-
tions with each other with respect to incomplete action mod-
els, which suggests these actions are more likely to be suc-
cessfully executed (i.e., with respect to the complete do-
main model). Note that we define the strength θ(o) of a
macro-operator o as θ(o) = #supported preconditions

#preconditions , where
#supported preconditions is the number of preconditions
supported by some actions in o, and #preconditions is the
total number of preconditions of actions in o.

Any action subsequence can be considered a macro-
operator schema. However, learning too many macro-
operators is costly. We thus choose to eliminate those with
low frequency or strength by setting a support constant
δ0 for frequency and a threshold θ0 for strength.We bor-
row the notion of frequent patterns defined in [Zaki, 2001;
Pei et al., 2004] to mine the frequent plan fragments. The
problem of mining sequential patterns can be stated as fol-
lows. Let I = {i1, i2, . . . , in} be a set of n items. We call a
subset X ⊆ I an itemset and |X| the size of X . A sequence is
an ordered list of itemsets, denoted by s = 〈s1, s2, . . . , sm〉,
where sj is an itemset. The size of a sequence is the number
of itemsets in the sequence, i.e., |s| = m. The length l of a
sequence s = 〈s1, s2, . . . , sm〉 is defined as l =

∑m
i=1 |si|.

A sequence sa = 〈a1, a2, . . . , an〉 is a subsequence of an-
other sequence sb = 〈b1, b2, . . . , bm〉 if there exist integers
1 ≤ i1 < i2 < . . . < in ≤ m such that a1 ⊆ bi1 , a2 ⊆
bi2 , . . . , an ⊆ bin , denoted by sa � sb. A sequence database
S is a set of tuples 〈sid, s〉, where sid is a sequence id and s
is a sequence. A tuple 〈sid, s〉 is said to contain a sequence
a, if a is a subsequence of s. The support of a sequence a in
a sequence database S is the number of tuples in the database
containing a, i.e., supS(a) = |{〈sid, s〉|(〈sid, s〉 ∈ S)∩(a �
s)}|. Given a positive integer δ as the support threshold, we
call a a frequent sequence if supS(a) ≥ δ. Given a sequence
database and the support threshold, frequent sequential pat-
tern mining problem is to find the complete set of sequential
patterns whose supports are larger than the threshold.

We convert the set of plan traces to a sequence database in
order to make use of the frequent pattern mining algorithm
for extracting macro-operators. Given that different action

instances with the same action name share the same model
description (i.e., preconditions/effects), we view each action
name (parameters omitted) in plan traces as an itemset, which
has only one element, and a plan trace as a sequence. The set
of plan traces can now be viewed as a sequence database.
In addition, we restrict the indices of itemsets of the mined
frequent subsequence to be continuous. In this way, we can
exploit a frequent pattern mining algorithm, such as SPADE
[Zaki, 2001], to mine a set of frequent subsequences.

Furthermore, after mining a set of frequent action subse-
quences, we consider the parameter constraints of actions. For
example, consider frequent action subsequence “putdown
unstack stack ”. There may be two scenarios in two
different plan traces, which are “(putdown A)(unstack
B C)(stack B A) ” and “(putdown a)(unstack b
c)(stack b d) ”. These two subsequences should not
be seen as the same macro-operator, since they represent
different meanings. Specifically, the first scenario produces
an effect “(on B A) ”, while the second scenario produces
an effect “(clear a) ”. Note that objects “A” and “a”
are two instances of the same variable, likewise for other
objects. As such, we consider these two scenarios as two
macro-operator schemas, as shown in Table 1.

Table 1: The example macro-operator schemas
(:macro macro1
(:parameters ?x - block ?y - block ?z - block)
(:actions (putdown ?x) (unstack ?y ?z) (stack ?y ?x)))
(:macro macro2
(:parameters ?x - block ?y - block ?z - block ?w - block)
(:actions (putdown ?x) (unstack ?y ?z) (stack ?y ?w)))

To sum up, we perform the following three steps to gener-
ate macro-operator schemas:

1. We first mine a set of subsequences F from T , whose
frequencies are larger than the preset support constant
δ0, neglecting the parameters of actions in T .

2. We then take the parameters of actions in F into consid-
eration, obtaining a new set of action subsequences with
corresponding parameters. We eliminate parameterized
subsequences whose frequencies are smaller than δ0 and
whose strengths are larger than the preset constant θ0,
resulting in a new set of frequent subsequences F ′.

3. Finally, we build macro-operator schemas O from
action subsequences in F ′ with all corresponding
parameters. As mentioned above, Table 1 shows
example macro-operator schemas constructed from
action subsequences “(putdown ?x)(unstack ?y
?z)(stack ?y ?x) ” and “(putdown ?x)(unstack
?y ?z)(stack ?y ?w) ”.

4.2 Building Soft Constraints

The next step in RIM enforces several constraints on all pos-
sible complete precondition and effect descriptions of actions
and macro-operators using the inputted incomplete action
models. These constraints are designed to be soft, directing
the MAX-SAT algorithm towards learning the most probable
complete description of actions and macro-operators.

2453

State Constraints

We first build soft constraints encoding possible precondi-
tions and effects of actions and macro-operators implied by
state transitions in plan traces. We preprocess plan traces
using incomplete action models to obtain more state infor-
mation for building state constraints. To do this, we sim-
ply “execute” each plan trace starting from its initial state,
and calculate (incomplete) states between actions using in-
complete action models. In particular, given a plan trace
t = 〈s0, a1, . . . , sn−1, an, g〉, we execute t from s0 using the
incomplete action models Ã, and calculate states si as fol-
lows: si = ÃDD(ai) ∪ P̃RE(ai+1) ∪ D̃EL(ai+1).

Note that in defining si we do not consider information
from previous states sj (j < i) due to the incompleteness
of models (i.e., we cannot determine whether propositions in
previous states are deleted by their next actions when propo-
sitions are not in the delete lists of these actions).2 We also
assume that actions do not delete propositions that are nonex-
istent, i.e., if p ∈ D̃EL(ai+1), p should be in ai+1’s previous
state si. We denote the resulting set of plan traces by T ′.

By observation, in T ′ we find that if a predicate frequently
appears before an action or macro-operator is executed, and
its parameters are also parameters of the action or operator,
then the predicate is likely to be its precondition. Similarly,
if a predicate frequently appears after an action or operator is
executed, it is likely to be one of its effects. We encode this
information in the form of state constraints as follows:3

1. For each predicate p in the state where action a is exe-
cuted and PARA(p) ⊆ PARA(a), we have p ∈ PRE(a).

2. For each predicate p in the state where operator o is ap-
plied and PARA(p) ⊆ PARA(o), we have p ∈ PRE(o).

3. For each predicate p in the state after action a is executed
and PARA(p) ⊆ PARA(a), we have p ∈ ADD(a).

4. For each predicate p in the state after operator o is ap-
plied and PARA(p) ⊆ PARA(o), we have p ∈ ADD(o).

We denote the set of the above constraints by SC. We scan
all plan traces in T ′ and count the occurrences of each con-
straint in T ′. We assign the number of occurrences as the
weight of the corresponding constraint.

Pair Constraints

It is likely that actions that frequently occur together have in-
timate relationships, such as one action providing conditions
for its next action. We would like to capture this information
to help learn action models.

Let α(o) = 〈a1, . . . , an〉 be an action sequence of macro-
operator o ∈ O. Since 〈a1, . . . , an〉 frequently occur to-
gether, as presented in Step 1 of Algorithm 1, ai is likely
providing conditions for ai+1 (0 < i < n), whose pa-
rameters are included by both ai and ai+1. We formulate
the idea with the following constraints: for each predicate

2An alternative approach that more fully exploits the partial
model, that we hope to investigate in future, is to allow previous
state information, but make the weight of the persisting conditions
to be lower than the immediate conditions

3We denote PARA(p), PARA(a) and PARA(o) as the set of pa-
rameters involed in predicate p, action a and macro-operator o.

p, if PARA(p) ⊆ (PARA(ai) ∩ PARA(ai+1)), then p ∈
ADD(ai) ∧ p ∈ PRE(ai+1).

We call these constraints pair constraints. The weights
of these constraints are the frequencies the macro-operators,
computed when building macro-operator schemas.

4.3 Building Hard Constraints

In this subsection, we enforce a set of hard constraints that
must be satisfied by action models and macro-operators.

Macro Constraints

Given action sequence α(o) = 〈a1, . . . , an〉 of o and models
of each action ai, we require that preconditions of o should
provide sufficient conditions for executing all actions ai; ef-
fects of o should include those that are created and not deleted
by the action sequence. That is to say, the following con-
straints should hold:

1. For each action ai and predicate p, if p ∈ PRE(ai) and
there is no action aj prior to ai that adds p, then p ∈
PRE(o) holds.

2. For each action ai and predicate p, if p ∈ ADD(ai)
and there is no action aj after ai that deletes p and
p �∈ PRE(o), then p ∈ ADD(o) holds.

3. For each action ai and predicate p, if p ∈ DEL(ai) and
there is no action aj after ai that adds p and p ∈ PRE(o),
then p ∈ DEL(o) holds.

Action Constraints

To make sure that the learned action models are consistent
with the STRIPS language, we further enforce some con-
straints, called action constraints, on different actions. We
formulate the constraints as follows [Yang et al., 2007] and
denote them by AC:

1. An action may not add a fact (instantiated atom) which
already exists before the action is applied. This con-
straint can be encoded as: p ∈ ADD(a) ⇒ p �∈ PRE(a).

2. An action may not delete a fact which does not exist be-
fore the action is applied. This constraint can be encoded
as: p ∈ DEL(a) ⇒ p ∈ PRE(a).

Plan Constraints

We require that the action models learned do not violate the
correctness of plan traces. This requirement is imposed on the
relationship between ordered actions in plan traces, ensuring
that the causal links in the plan traces are not broken. That is,
for each precondition p of an action aj in a plan trace, either p
is in the initial state, or there is an action ai (i < j) prior to aj
that adds p and there is no action ak (i < k < j) between ai
and aj that deletes p. We formulate the constraints as follows
and denote them by PC:

p ∈ PRE(aj)∧ (p ∈ s0 ∨ (p ∈ ADD(ai)∧¬p �∈ DEL(ak))),

where i < k < j.

Incomplete Model Constraints

Finally, we enforce constraints ensuring that preconditions
and effects in the given action models, though incomplete,
are correctly specified. In other words, for each action a ∈ A
and predicate p, we have

p ∈ P̃RE(a) → p ∈ PRE(a),

2454

and
p ∈ ÃDD(a) → p ∈ ADD(a),

and
p ∈ D̃EL(a) → p ∈ DEL(a).

To make sure these constraints are hard, we assign a large
enough weight, denoted by wmax, to these constraints. In our
experiment, we simply chose the maximal weight of state
constraints and macro constraints as the value of wmax.

4.4 Solving Constraints

We put all constraints together and solve them with a
weighted MAX-SAT solver [LI et al., 2007]. We exploit
MaxSatz [LI et al., 2007] to solve all the hard constraints,
and attain a true or false assignment to maximally satisfy
the weighted constraints. Given the solution assignment, the
construction of macro-operators O and action models A is
straightforward; e.g., if “p ∈ ADD(a)” is assigned true in the
result of the solver, p will be converted into an effect of a.

4.5 Phase II: Solving Planning Problems

With the macro-operators and action models learned, we can
easily solve new planning problems using planners, such
as FF.4 We view each macro-operator as a special action
model during planning, neglecting its corresponding action
sequence. We make a minor modification to FF to make it
prefer applying macro-operators during searching. Macros in
the plan returned will then be replaced by corresponding ac-
tion subsequences, resulting in the solution for problem P̃ .

5 Experiments

5.1 Dataset and Criterion

We evaluate RIM algorithm in three planning domains:
blocks2, driverlog5 and depots4. In each domain, we gener-
ate from 30 to 150 plan traces for learning domain models
and 50 new planning problems for testing the learnt domain
models.

We define the accuracy Acc as the percentage of correctly
solved planning problems. Specifically, we employ RIM to
generate solutions to planning problems, and execute these
solutions from the initial states using ground truth action
models which are assumed to be correct. In other words, we
assume that we possess a set of ground truth action models
for testing RIM. If a solution can be successfully executed,
achieving the corresponding goals, then it is considered to be
correct. We denote by Nc the number of planning problems
solved by these correct solutions, and by Nt the number of
all testing problems. As a result, the accuracy of RIM can be
defined by Acc = Nc

Nt
.

5.2 Experimental Results

We evaluate RIM in the following aspects. We first compare
the accuracies of solving planning problems using domain
models learnt by RIM and ARMS, to see the advantage of
the learnt macro-operators in solving planning problems. We
then test the variation of accuracies of RIM with respect to

4http://fai.cs.uni-saarland.de/hoffmann/ff.html
5http://planning.cis.strath.ac.uk/competition/

different percentages of completeness of domain models and
different thresholds of frequencies forming macro-operators.
Finally, we show the running time to see the efficiency of
RIM. In all experiments, we set the threshold for strength of
all macro-operators θ0 = 0.25.

Comparison between RIM and ARMS

To see the benefit we get from the learnt macro-operators,
we compare RIM and ARMS like this: we first learn macro-
operators and action models using RIM and solve 50 new
planning problems using the learnt models; we then learn
action models using ARMS and solve the same 50 planning
problems with the learnt action models. Note that since ARMS
constructs action models from only plan traces, we also as-
sume empty action models in using RIM. Thus, the only dif-
ference is that RIM learns both action models and macro-
operators to further support robust plan synthesis. The thresh-
old δ0 is set to be 15.

30 60 90 120 150
0

0.2

0.4

0.6

0.8

1

number of plan traces

A
cc

blocks

ARMS
RIM

30 60 90 120 150
0

0.2

0.4

0.6

0.8

1

number of plan traces

A
cc

driverlog

ARMS
RIM

30 60 90 120 150
0

0.2

0.4

0.6

0.8

1

number of plan traces

A
cc

depots

ARMS
RIM

Figure 2: Comparison between ARMS and RIM

Figure 2 shows the accuracies of the two approaches. We
can see that the accuracies of RIM are generally better than
ARMS, which suggests that the learned macro-operators in-
deed help solve new planning problems. This is because
macro-operators with high frequencies contribute helpful in-
formation for searching correct actions. We can also find that
as expected, when the number of plan traces increases, the
accuracies are also getting higher. This is consistent with our
intuition, since the more plan traces we have, the more infor-
mation is available for learning high-quality domain models
(including both macro-operators and action models), and thus
helpful for solving new planning problems. It is likely that
RIM may produce longer solutions because of its preferences
for using macro-operators. However, in the experiments we
observe that the average length of solutions of RIM is not sig-
nificantly higher, compared to not using macro-operators. For
example, consider using 150 plan traces for learning in the
blocks domain. The average length of solutions is 18 when
using action models learnt by ARMS; while the average length
of solutions (to the same problems as solved by ARMS) is 21
when using preferences of macro-operators learnt by RIM.
This is reasonable given that the plans with macro-operators
have higher quality.

Accuracies with respect to incomplete action models

We also would like to see the impact of the input incomplete
action models. We vary the percentage of known precondi-
tions or effects of action models from 20% to 100%, and run
RIM three times to calculate the average for accuracies. We
fix the number of plan traces to be 90 and keep the same
threshold of frequencies δ0 = 15 as the previous part.

2455

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

percentage (%)

A
cc

blocks

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

percentage (%)

A
cc

driverlog

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

percentage (%)

A
cc

depots

Figure 3: Accuracies w.r.t. completeness of action models.

The result is shown in Figure 3. We find that in all three do-
mains the accuracies generally get higher when the percent-
ages for model completeness increase. The results indicate
that the input incomplete action models encoded as hard con-
straints in RIM are helpful for acquiring high-quality macro-
operators and action models. As an extreme case, when the in-
put action models are complete, i.e., the percentage is 100%,
all test problems can be correctly solved given the learned do-
main models.6 This is because the macro-operators learned
are also complete based on the hard macro constraints, which
suggests that we can solve the test problems correctly using
the learnt macro-operators.

Accuracies with respect to frequency thresholds

We also studied the impact of different frequency thresholds
δ0, which is used in mining macro-operators, in synthesizing
correct plans. We set the number of plan traces to be 90, and
the percentage of known preconditions and effects of action
models to be 60%. The result is shown in Figure 4.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

threshold

A
cc

blocks

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

threshold

A
cc

driverlog

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

threshold

A
cc

depots

Figure 4: Accuracies w.r.t. different thresholds of frequencies.

We find that the accuracies in all three domains go up at the
beginning and then go down after the threshold δ0 reaches a
large value (e.g., 15). This indicates that the threshold should
neither be too low nor too high, since many noisy macro-
operators will be learned when the threshold is too low, and
many high-quality macro-operators will be missed when it is
too high. The correctness of solution plans decreases in both
cases. For our experiment data, we empirically observe the
best threshold should be 15 with respect to 90 plan traces.

The plots in Figure 4 also shed light on whether macros
provide additional benefit when learning in conjunction with
partial models. For a given partial model, when we increase
the threshold for macro frequency too high–thereby effec-
tively eliminating macros from the learned model–the plan-
ner accuracy reduces. This demonstrates that even with par-
tial models (domain knowledge), macros do help in improv-
ing the planner accuracy. Part of the reason is that the learned
macro actions improve the learned primitive actions too. This
synergy happens because we build pair constraints based on
macro actions as well as partial model to improve the learning
of primitive actions.

6We use only solvable test problems in the experiment.

Running time

To study the efficiency of RIM, we ran RIM over 50 plan-
ning problems and calculated the average solving time with
respect to different number of plan traces in the driverlog do-
main. The result is shown in Figure 5. As can be seen from
the figure, the running time increases polynomially with the
number of input plan traces. This can be verified by fitting
the relationship between the number of plan traces and the
running time to a performance curve with a polynomial of
order 2 or 3. For example, the fit polynomial in Figure 5 is
−0.0289x2 + 14.62x − 39.6. The results for the other two
domains are similar to driverlog, i.e., the running time also
polynomially increases as plan traces increase.

30 60 90 120 150
200

400

600

800

1000

1200

1400

1600

number of plan traces

cp
u

tim
e

(s
ec

on
ds

)

Figure 5: The running time of RIM for domain driverlog.

6 Conclusion

In this paper, we presented a system called RIM for learning
domain models for planning with incomplete models. RIM
is able to integrate knowledge from both incomplete domain
models and a set of plan traces to produce solutions to new
planning problems. With the incomplete domain models and
plan traces, we first learn a set of macro-operators as well
as a set of updated action models, and then solve new plan-
ning problems using the learned models. Our approach is well
suited for scenarios where the planner is limited to incom-
plete models of the domain, but does have access to a set
of plan traces that are correct with respect to the complete
(but unknown) domain theory. Although in the current paper
we focused on incomplete but correct initial models, our ap-
proach can also handle incorrect initial models. All that is
needed is to make the precondition and effect constraints also
be soft constraints rather than hard as they are in the current
setup. Another optional solution to our problem is to directly
mine a set of frequent (i.e., highly related to the problem)
plan fragments and “concatenate” these fragments with the
help of incomplete models to form the final solution, rather
than refining incomplete domain models, as presented in our
parallel work ML-CBP [Zhuo et al., 2013]. In the future we
are interested in comparing RIM and ML-CBP.

Acknowledgements: Hankz Hankui Zhuo thanks Natural
Science Foundation of Guangdong Province of China (No.
S2011040001869), Research Fund for the Doctoral Program
of Higher Education of China (No. 20110171120054) and
National Natural Science Foundation of China (61033010)
for the support of this research. Kambhampati’s research is
supported in part by the ARO grant W911NF-13-1-0023,
the ONR grants N00014-13-1-0176, N00014-09-1-0017 and
N00014-07-1-1049, and the NSF grant IIS201330813.

2456

References

[Alterman, 1986] Richard Alterman. An adaptive planner. In
Proceedings of AAAI, pages 65–71, 1986.

[Bertoli et al., 2010] Piergiorgio Bertoli, Marco Pistore, and
Paolo Traverso. Automated composition of web services
via planning in asynchronous domains. Artificial Intelli-
gence Journal, 174(3-4):316–361, 2010.

[Blythe et al., 2004] J. Blythe, E. Deelman, and Y. Gil. Au-
tomatically composedworkflows for grid environments.
IEEE Intelligent Systems, 19(4):16–23, 2004.

[Botea et al., 2005] Adi Botea, Markus Enzenberger, Mar-
tin Muller, and Jonathan Schaeffer. Macro-ff: Improving
ai planning with automatically learned macro-operators.
Journal of Artificial Intelligence Research, 24:581–621,
2005.

[Coles and Smith, 2007] Andrew Coles and Amanda Smith.
Marvin: A heuristic search planner with online macro-
action learning. Journal of Artificial Intelligence Research,
28:119–156, 2007.

[Fikes et al., 1972] Richard E. Fikes, Peter E. Hart, and
Nils J. Niisson. Learning and executing generalized robot
plans. Artificial Intelligence, 3:251–288, 1972.

[Garland and Lesh, 2002] Andrew Garland and Neal Lesh.
Plan evaluation with incomplete action descriptions. In
Proceedings of AAAI, pages 461–467, 2002.

[Hammond, 1989] K. J. Hammond. Case-Based Planning:
Viewing Planning as a Memory Task. Academic Press,
San Diego, CA, 1989.

[Hoffmann et al., 2007] Joerg Hoffmann, Piergiorgio
Bertoli, and Marco Pistore. Web service composition
as planning, revisited: In between background theo-
riesandinitial state uncertainty. In Proceedings of AAAI,
2007.

[Iba, 1989] Glenn A. Iba. A heuristic approach to the discov-
ery of macro-operators. Machine Learning, 3:285–317,
1989.

[Kambhampati, 2007] Subbarao Kambhampati. Model-lite
planning for the web age masses: The challenges of plan-
ning with incomplete and evolving domain theories. In
Proceedings of AAAI, 2007.

[Korf, 1985] Richard E. Korf. Macro-operators: A weak
method for learning. Artificial Intelligence, 26:35–77,
1985.

[LI et al., 2007] Chu Min LI, Felip Manya, and Jordi Planes.
New inference rules for Max-SAT. Journal of Artificial
Intelligence Research, 30:321–359, October 2007.

[Newton et al., 2007] M.A. Hakim Newton, John Levine,
Maria Fox, and Derek Long. Learning macro-actions for
arbitrary planners and domains. In Proceedings of ICAPS,
pages 256–263, 2007.

[Nguyen et al., 2011] Tuan Nguyen, Subbarao Kambham-
pati, and Minh Do. Synthesizing robust plans under in-
complete domain models. In AAAI Workshop on General-
ized Planning, 2011.

[Pei et al., 2004] Jian Pei, Jiawei Han, Behzad Mortazavi-
Asl, Jianyong Wang, Helen Pinto, Qiming Chen, Umesh-
war Dayal, and Mei-Chun Hsu. Mining sequential
patterns by pattern-growth: The prefixspan approach.
IEEE Transactions on Knowledge and Data Engineering,
16(11):1424–1440, 2004.

[Weber and Bryce, 2011] Christopher Weber and Daniel
Bryce. Planning and acting in incomplete domains. In
Proceedings of ICAPS, pages 274–281, 2011.

[Yang et al., 2007] Qiang Yang, Kangheng Wu, and Yunfei
Jiang. Learning action models from plan examples us-
ing weighted MAX-SAT. Artificial Intelligence Journal,
171:107–143, February 2007.

[Zaki, 2001] Mohammed J. Zaki. Spade: An efficient algo-
rithm for mining frequent sequences. machine learning,
42:31–60, 2001.

[Zettlemoyer et al., 2005] Luke S. Zettlemoyer, Hanna M.
Pasula, and Leslie Pack Kaelbling. Learning planning
rules in noisy stochastic worlds. In Proceedings of AAAI,
2005.

[Zhuo et al., 2010] Hankz Hankui Zhuo, Qiang Yang,
Derek Hao Hu, and Lei Li. Learning complex action
models with quantifiers and implications. Artificial
Intelligence, 174(18):1540 – 1569, 2010.

[Zhuo et al., 2013] Hankz Hankui Zhuo, Tuan Nguyen, and
Subbarao Kambhampati. Model-lite case-based planning.
In Proceedings of AAAI, 2013.

2457

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

