
Artificial Intelligence 246 (2017) 1–21

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Model-lite planning: Case-based vs. model-based approaches

Hankz Hankui Zhuo a,∗, Subbarao Kambhampati b

a School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
b Department of Computer Science and Engineering, Arizona State University, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 July 2015
Received in revised form 17 January 2017
Accepted 19 January 2017
Available online 25 January 2017

Keywords:
AI planning
Case-based planning
Action model learning

There is increasing awareness in the planning community that depending on complete
models impedes the applicability of planning technology in many real world domains
where the burden of specifying complete domain models is too high. In this paper, we
consider the problem of generating robust and accurate plans, when the agent only has
access to incomplete domain models, supplanted by a set of successful plan cases. We will
develop two classes of approaches – one case-based and the other model-based. ML-CBP
is a case-based approach that leverages the incomplete model and the plan cases to solve a
new problem directly by affecting case-level transfer. RIM is a model-based approach that
uses the incomplete model and the plan cases to first learn a more complete model. This
model contains both primitive actions as well as macro-operators that are derived from the
plan cases. The learned model is then used in conjunction with an off-the-shelf planner
to solve new problems. We present a comprehensive evaluation of the two approaches,
both to characterize their relative tradeoffs, and to quantify their advances over existing
approaches.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Most work in planning assumes that complete domain models are given as input in order to synthesize plans. However,
there is increasing awareness that building domain models at any level of completeness presents steep challenges for do-
main creators. Indeed, recent work in web-service composition (cf. [5,23]) and work-flow management (cf. [6]) suggest that
dependence on complete models can well be the real bottle-neck inhibiting applications of current planning technology.

There has thus been interest in the so-called “model-lite” planning approaches (cf. [29]) that aim to synthesize plans even
in the presence of incomplete domain models. The premise here is that while complete models cannot be guaranteed, it is
often possible for the domain experts to put together reasonable but incomplete models to generate plans. The challenge
then is to work with these incomplete domain models, and yet produce plans that have a high chance of success with
respect to the “complete” (but unknown) domain model. Producing such robust plans is, of course, only possible if the
planner has access to additional sources of knowledge besides the incomplete domain model.

In this paper, we look at the case where, in addition to the incomplete model, the agent has access to plan cases that
were successful in the past. It is not difficult to collect successful plan cases in real-world applications. For example, oper-
ating systems, such as Linux, can easily collect successful plan cases by recording the log information when users operating
the system, as mentioned by Yang et al. [52]. As another real-world application, in intelligent factory, the control center

* Corresponding author.
E-mail addresses: zhuohank@mail.sysu.edu.cn (H.H. Zhuo), rao@asu.edu (S. Kambhampati).

http://dx.doi.org/10.1016/j.artint.2017.01.004
0004-3702/© 2017 Elsevier B.V. All rights reserved.

2 H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21

Fig. 1. The framework of ML-CBP.

Fig. 2. The framework of RIM.

can collect plan cases by recording instructions distributed to mechanical equipments and/or workers, or using sensors to
observe actions executed by mechanical equipments and/or workers. On the other hand, we consider that the preconditions
and effects specified in the incomplete domain model are composed of human’s common knowledge. For example, Exe-
cuting an action of “deleting a file” generally requires a precondition specifying that “the file exists”, resulting in “the file
being deleted” (as an effect of the action of “deleting”). This common knowledge is generally correct and not difficult to
collect. Here we define a plan case by a triple, i.e., an initial state s0, a goal g and an action sequence that transits s0 to g .
These cases can be seen as providing additional knowledge of the domain over and above the incomplete domain theory.
Specifically, they indicate that the true model must correspond to an extension of the incomplete model that will allow
the plan cases to execute successfully. Such cases can be exploited in either case-based or model-based approaches. In the
case-based approaches, the new problems are solved by directly using cases, while in the later, the cases are first compiled
into a (refined) action model, which is then passed on to an off-the-shelf planner. The aim of this paper is to develop and
compare both case-based and model-based approaches. We are interested, in particular, in how the number of available
cases and the degree of incompleteness of the input model affect the relative performance of the two types of approaches.

At first blush, it would seem as if we can directly use off-the-shelf case-based approaches (such as OAKPlan [44]) or
action-model-learning approaches (such as ARMS [60,52]). This however turns out not to be the case. As we shall elaborate
below, the existing case-based approaches assume availability of the complete domain model (and focus on efficiency rather
than robustness). Most of existing model-learning approaches, in contrast, assume that only plan cases are available, and
thus do not exploit the availability of a partial/incomplete model. As we shall see, such a partial model can be leveraged to
come up with models that include macro-actions in addition to primitive ones.

Accordingly, in this paper, we develop and present novel case-based as well as model-based approaches. For the case-
based approach, we take a two stage process. First, we use the incomplete domain model to synthesize a “skeletal” plan.
Next, with the skeletal plan in hand, we “mine” the case library for fragments of plans that can be spliced into the skeletal
plan to increase its correctness. The plan improved this way is returned as the best-guess solution to the original problem.
We call this approach ML-CBP, which stands for Model-Lite Case-Based Planning, a previous version of which can be found
from [57]. The framework of ML-CBP is shown in Fig. 1. Plan cases are exploited to produce plan solutions for planning
problems directly in ML-CBP.

For the model-based approach we develop a framework called RIM (which stands for Refining Incomplete planning
domain Models through plan cases, a previous version of which can be found from [58]. The framework of RIM is shown
in Fig. 2) that extends the ARMS family of methods for learning models from plan cases [60,52] so that they can benefit
from both the incomplete model, and the macro-operators extracted from the plan cases. In the first phase, we mine
candidate macros mined from the plan cases, and in the second phase we learn precondition/effect models both for the
primitive actions and the macro actions. Finally we use the refined model to do planning (where the planner is biased

H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21 3

towards using the learned macro actions where possible). In RIM, plan cases are leveraged to refine action models and
learn macro-operators (which are then utilized to generate plan solutions), rather than being used to directly generate plan
solutions for planning problems, as done by ML-CBP. We refer to RIM as model-based approach.

The core of our paper involves presenting and evaluating ML-CBP and RIM. The aim of our evaluation is three fold:
First, and foremost, we are interested in comparing the relative advantages of model-based vs. case-based approaches for
model-lite planning. We do this by comparing ML-CBP and RIM in terms of the accuracy (robustness) of the plans they
produce given the same input (incomplete) model, and cases. In doing this comparison, we also evaluate how the perfor-
mance varies as we vary the level of incompleteness of the input model, as well as the number of plan cases provided.
Finally, in addition to accuracy, we also consider the computational resources consumed by each of these approaches. Sec-
ondly, we also compare the performance of ML-CBP and RIM to an off-the-shelf case-based planning system (OAKPlan [44])
and an action-model learning framework (ARMS [60,52]). This comparison serves to establish the technical advances of our
proposed methods over existing work.

We organize the paper as follows. We first review related work, and then present the formal definition of our problem.
After that, we give a detailed description of both ML-CBP and RIM. Finally, we evaluate ML-CBP and RIM in planning
domains, and conclude the paper with future work.

2. Related work

Our work is related to case-based planning, model-lite planning, macro-operator based planning, and action model ac-
quisition for planning. We will review these works in the following subsections.

2.1. Case-based planning

In case-based planning [8] a critical task is to efficiently identify problems that are most similar to the new problem
to solve within a library of solved problems. Different case-based planners vary depending on how they adapt a solution
to a new problem, whether or not using multiple existing plans for building a new solution, etc. [45]. As mentioned by
Munoz-Avila and Cox [37], plan adaptation can be classified into two types, i.e., transformational and derivational analogy.
In transformational analogy previous plans are reused in the new problem by making suitable changes [11,49]. Systems like
CHEF [20] and PLEXUS [1] viewed the case library as an extensional representation of the domain knowledge. CHEF’s use
of case modification rules, for example, serves a similar purpose as our use of incomplete domain models. The post-CHEF
case-based planning work largely focused on having access to a from-scratch planner operating on complete domain models
(cf. [30,50]). The most recent of this line of work is OAKPlan [44], which we compare against. OAKPlan aims to retrieve
planning cases from plan libraries which contain more than ten thousand cases, choose heuristically a suitable candidate
and adapt it to provide a good quality solution plan given a planning problem (including complete action models) as
input. A critical task in case-based planning is to efficiently identify, within a large library of already solved problems,
those which are most similar to the new problem to solve. Vallati et al. [48] exploit new features that was first proposed
by [15] to identify planning problems. The priar system [30] exploited three different types of validations, i.e., filtering
condition, precondition, and phantom goal, as well as different reduction levels for the plan that represents a hierarchical
decomposition of its structure, along with five different strategies for repairing validation failures. In contrast, the SPA
system [21] uses the plan representation of causal links and order constraints. It performs the process of plan adaptation
by a fairly simple extension of the process of plan generation. Plan generation in SPA is a special case of plan adaptation
assuming there is no retrieved structure to exploit.

In derivational analogy, cases are derivational traces instead of plans as in transformation analogy, i.e., cases are se-
quences of computational steps a planner follows to generate plans, e.g., derSNLP [27], CAPlan/CbC [35], CLAM [33], Paris
[4] and HICAP [36], etc. Since planners can replay derivational traces related to new problems, derivational analogy provides
more flexibility, without requiring transformational operators. derSNLP and CAPlan/CbC build on a partial-order planner GPG
[17], a planner using planning graphs. CLAM [33] constructs analogy-driven proof plans and uses derivational analogy to
reformulate the source plans for case replay. CLAM exploits first-principles to achieve the unsolved goals. Paris [4] employs
first-principles planning as well. The difference is that it stores and reuses abstract plans that use actions with aggregate
granularity. HICAP is an interactive hierarchical CBP system [36], which extends retrieved cases via first-principle planning,
using first principles to adapt the plan obtained during replay.

Our work however differs from previous work in two ways. First, unlike us allowing domain models being incomplete,
previous work generally assumes access to a (more) complete domain model during its debugging stage. Second, previous
work generally tries to adapt a specific case to the problem at hand, while our work expands a skeletal plan with relevant
plan fragments mined from multiple library plans.

2.2. Model-lite planning

Planning with incomplete information dates back to the beginning of 90s [41,14], where incomplete information about
planning states was first introduced. To complement the incomplete information of states, planning with observations were
introduced, resulting in planning with conditional effects [43,40]. Recently planning with incomplete information has also

4 H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21

extended to multi-agent environments [47]. Despite the success of previous systems, they all assume the domain model or
action description is complete.

Planning with risks is similar to planning with incomplete information [7], where the action descriptions or domain
models, instead of states, are incomplete. The action incompleteness could be modeled as state incompleteness and plans
might be conformant. Conformant planning techniques are, however, not readily applicable because plans with risks cannot
guarantee goal satisfaction, rather, only partial satisfaction. Instead of compiling incomplete action descriptions to incom-
plete states, symbolic constraint propagation and model counting based approaches have been proposed for counting the
number of incomplete domain model interpretations under which a plan is consistent [34].

The recent focus on planning with incomplete domain models originated with the work on “model-lite planning” [29].
Approaches for model-lite planning must either consider auxiliary knowledge sources or depend on long-term learning.
While our work views the case-library as the auxiliary knowledge source, work by Nguyen et al. [39] and Weber et. al. [10]
assume that domain writers are able to provide annotations about missing preconditions and effects. It would be interesting
to see if these techniques can be combined with ours. One interesting question, for example, is whether the case library can
be compiled over time into such possible precondition/effect annotations.

2.3. Macro-operator based planning

There have been many planning approaches that learn and use macro-operators in planning. Fikes et al. [16] proposed
to build generalized plans and use them as macro actions and monitor plan execution. Korf [31] proposed to learn efficient
strategies for solving difficult problems by searching macro-operators. Iba [26] developed a system, called MACLEARN, to
learn new macro operators, which can be defined based on other macro operators, to improve the efficiency of problem
solving. Botea et al. [9] presented and compared two automated methods that learn relevant information from previous
experience in a domain and use it to solve new problem instances, by lifting partial-order macros from plans based on
an analysis of causal links between successive actions. Newton et al. [38] proposed an offline method that learns macros
genetically from plans for arbitrarily chosen planners and domains without focusing on exploiting particular planner or
domain properties. He et al. [22] presented a POMDP algorithm for planning under uncertainty with macro-actions (PUMA)
that automatically constructed and evaluated open-loop macro-actions within forward-search planning.

All these efforts however assume that the learner has access to a complete domain model, and are motivated mainly by
the desire to reduce the time taken for planning. In contrast, RIM culls and uses macro-operators to increase the accuracy
of the incomplete model.

2.4. Action model learning

A third strand of research that is also related to our work is that of action model learning. Work such as [52,60,59,56,55,
54,51,13,18] focuses on learning action models directly from observed (or pre-specified) plan cases. The connection between
this strand of work and our work can be seen in terms of the familiar up-front vs. demand-driven knowledge transfer: the
learning methods attempt to condense the case library directly into STRIPS models before using it in planning, while we
transfer knowledge from cases on a per-problem basis. In contrast, work such as [2], as well as much of the reinforcement
learning work [46] focuses on learning models from trial-and-error execution.1 This too can be complementary to our work
in that execution failures can be viewed as opportunities to augment the case-library (cf. [28]).

We focus on learning in the presence of an existing incomplete model. Starting from STRIPS [16], macro-operator learning
has been a staple in automated planning (cf. [31,26,12,9,38]). All these efforts however assume that the learner has access
to a complete domain model, and are motivated mainly by the desire to reduce the time taken for planning. In contrast, we
cull and use macro-operators to increase the accuracy of the incomplete model, which takes a global view of first refining
the incomplete model using the learned models of primitive and macro actions.

3. Problem definition

A STRIPS domain model is defined as a tuple M = ⟨R, A⟩, where R is a set of predicates with typed objects and A is a
set of action models. Each action model is a quadruple ⟨a, PRE(a), ADD(a), DEL(a)⟩, where a is an action name with zero or
more parameters, PRE(a) is a precondition list specifying the conditions under which a can be applied, ADD(a) is an adding
list and DEL(a) is a deleting list indicating the effects of a. We denote RO as the set of propositions instantiated from R
with respect to a set of typed objects O. Given M and O, we define a planning problem as P = ⟨O, s0, g⟩, where s0 ⊆ RO
is an initial state, g ⊆ RO are goal propositions. A solution plan to P with respect to model M is a sequence of actions
p = ⟨a1, a2, . . . , an⟩ that achieve goal g starting from s0.

We define a STRIPS domain model to be complete with respect to a set of predefined solutions of planning problems
(i.e. cases), if it can be used (by a planner) to generate that set of predefined solutions to the planning problems. An action
model ⟨a, PRE(a), ADD(a), DEL(a)⟩ is considered incomplete if in PRE(a), ADD(a), or DEL(a) there are predicates missing

1 This latter has to in general be limited to ergodic domains.

H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21 5

Fig. 3. An input example of ML-CBP for domain blocks.

which lead to some of the set of predefined planning solutions to fail. We denote Ã as a set of incomplete action models,
and thus M̃ = ⟨R, Ã⟩ the corresponding incomplete STRIPS domain. Although action models in Ã might have incomplete
preconditions and effects, we assume that the number of action models is identical between Ã and A, i.e., |Ã| = |A|, and
that preconditions and effects specified in Ã are correct. We are now ready to formally state the problem we address:
Given: ⟨P̃, M̃, C⟩, where P̃ = ⟨O, so, g⟩ is a planning problem, M̃ is an incomplete domain available to the planner, and C
is a set of successful solution plans (or plan cases) that are correct with respect to the complete model M. Specifically, each
plan case provides a plan pi for problem Pi = ⟨Oi, si

0, g
i⟩ that is correct with respect to M. A plan case ci is composed of

a triple ci = ⟨si
0, pi, gi⟩.

Objective: Find a solution to P̃ that is correct w.r.t. M.

We note that M is not given directly but only known indirectly (and partially) in terms of the cases that are successful
in it. We note that since the incomplete model M̃ is not necessary an abstraction of the complete domain, a plan correct
w.r.t. M might not even be correct with respect to M̃ (in other words, the upward refinement property [3] does not hold
with model incompleteness).

An example input of our planning problem in blocks2 domain is shown in Fig. 3. It is composed of three parts: (a) in-
complete action models, (b) the problem including the initial state s0 and goals g , and (c) a set of plan cases. In Fig. 3(a),
the gray parts indicate the missing predicates. In Fig. 3(c), p1 and p2 are two plan cases with the initial states and goals
in brackets. One solution to the example problem is “unstack(C A) putdown(C) pickup(B) stack(B A) pickup(C)
stack(C B) pickup(D) stack(D C)”.

4. The ML-CBP algorithm

Algorithm 1. The ML-CBP algorithm.
Input: P̃ , M̃, and a set of plan cases C.
Output: the plan psol for solving the problem.
1: generate a set of causal pairs L with P̃ and M̃;
2: build a set of plan fragments ϕ:

ϕ = build_fragments(P̃, C);
3: mine a set of frequent plan fragments F :

F = freq_mining(ϕ);
4: psol = concat_frag(L, F);
5: return psol ;

An overview of our ML-CBP algorithm can be found in Algorithm 1. We first use P̃ and M̃ to generate a skeletal plan
represented by a set of causal pairs. After that, we build a set of plan fragments based on plan cases and causal pairs, and
then mine a set of frequent plan fragments with a specific threshold. These frequent fragments will be integrated together
to form the final solution psol based on causal pairs. Next, we describe each step in detail.

4.1. Generate causal pairs

Given the initial state s0 and goal g , we generate a set of causal pairs L. A causal pair is an action pair ⟨ai , a j⟩ such that
ai provides one or more conditions for a j . The procedure to generate L is shown in Algorithm 2. Note that, in step 3 of

2 http :/ /www.cs .toronto .edu /aips2000/.

6 H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21

Algorithm 2. Generate causal pairs.
input: P̃ : ⟨O, s0, g⟩, and M̃.
output: a set of causal pairs L.
1: L = ∅;
2: for each proposition f ∈ g do
3: generate a plan with M̃, denoted by a set of causal pairs L′ , to transit s0 to f ;
4: L = L ∪ L′;
5: end for
6: return L;

Algorithm 2, L′ is an empty set if f cannot be achieved. In other words, skeletal plans may not provide any guidance for
some top level goals. Actions in causal pairs L is viewed as a set of landmarks for helping construct the final solution, as
will be seen in the coming sections. In this step we do not consider the interaction among goals, since there is no available
information that we can exploit to capture the interaction of goals based on the input plan cases or incomplete action
models. We thus at first build a “skeletal” plan based on single goals, ignoring the interaction among goals, and then fix or
revise the skeletal plan using frequent plan fragments.

Example 1. As an example, causal pairs generated for the planning problem given in Fig. 3 is {⟨ pickup(B), stack(B A)⟩,
⟨unstack(C A), stack(C B)⟩, ⟨ pickup(D), stack(D C)⟩}.

4.2. Creating plan fragments

In the procedure build_fragments of Algorithm 1, we would like to build a set of plan fragments ϕ by building mappings
between “objects” involved in s0 and g of P̃ and those in si

0 and gi of plan case pi ∈ C . In other words, a mapping, denoted
by m, is composed of a set of pairs {⟨o′, o⟩}, where o and o′ are objects in P̃ and pi respectively. We can apply mapping m
to a plan case pi , whose result is denoted by pi |m , such that si

0|m and s0 share common propositions, likewise for gi and g .
We measure a mapping m by the number of propositions shared by initial states si

0|m and s0, and goals gi and g , assuming
that all propositions are “equally” important in describing states. We denote the number of shared propositions by θ(pi , m),
i.e.,

θ(pi,m) = |(si
0|m) ∩ s0| + |(gi |m) ∩ g|.

Example 2. In Fig. 3, a possible mapping m between ⟨s0, g⟩ and ⟨s1
0, g

1⟩ of p1 is {⟨b4, D⟩, ⟨b1, C⟩, ⟨b3, B⟩, ⟨b2, A⟩}. The
result of applying m to s1

0 is s1
0|m = {(clear C)(clear A)(clear B)(clear D)(ontable C)(ontable A)(ontable B)

(ontable D)(handempty)}. g1|m can be computed similarly, and thus θ(p1, m) = |(s1
0|m) ∩ s0| + |(g1|m) ∩ g| = 10.

Given that there might be different mappings between P̃ and pi , we seek for the one maximally mapping pi to P̃ ,
defined as m∗ = arg maxm θ(pi, m). The more common propositions P̃ and pi share, the more “similar” they are. Note that
mappings between objects of the same types are subject to the constraint that they should have the set of “features” in the
domain, defined by unary predicates of the corresponding types. For instance, “b3” can be mapped to “B” in our running
example since both of them are the two blocks having the same features “on table” and “clear” in the two problems. In
practice, we find that this requirement significantly reduces the amount of mappings that need to be considered, actually
allowing us to find m∗ in a reasonable running time. It is true that the problem of building mappings is NP-hard. To handle
this problem we have to leverage constraints to prune the explosion space and/or exploit approximate algorithms, such
as greedy methods, to estimate the maximal mapping. In the experiment, we find that the above-mentioned constraints
can indeed reduce a great deal of the mapping space, and thus do not consider exploiting approximate approaches in the
procedure of build_fragments. We believe it is straightforward to utilize approximate approaches to further reducing the
space when the problem becomes huge.

We apply the mapping m∗ to pi to get a new plan pi |m∗ . We then scan the new plan to extract subsequences of actions
such that all objects in each subsequence appear in the given problem P̃ . We call these subsequences plan fragments. We
repeat the process for plan cases C to obtain the set ϕ of plan fragments.

Example 3. In Example 2, we find that for p1, m∗ = {⟨b4, D⟩, ⟨b1, C⟩, ⟨b3, B⟩, ⟨b2, A⟩}. Thus, p1|m∗ is “pickup(B) stack(B
A) pickup(C) stack(C B) pickup(D) stack(D C)”. For p2 in Fig. 3, m∗ is {⟨b3, C⟩, ⟨b1, B⟩, ⟨b2, A⟩}. Thus, p2|m∗ is
“unstack(C A) putdown(C) pickup(B) stack(B A) pickup(C) stack(C B)”. Both of the two are plan fragments.

4.3. Mining frequent plan fragments

In step 3 of Algorithm 1, we aim at building a set of frequent plan fragments F using the procedure freq_mining. Those
are plan fragments occurring multiple times in different plan cases, increasing our confidence on reusing them in solving
the new problem. We thus borrow the notion of frequent patterns defined in [53,42] for extracting F .

H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21 7

The problem of mining sequential patterns can be stated as follows. Let I = {i1, i2, . . . , in} be a set of n items. We call a
subset X ⊆ I an itemset and |X | the size of X . A sequence is an ordered list of itemsets, denoted by s = ⟨s1, s2, . . . , sm⟩. The
size of a sequence is the number of itemsets in the sequence, i.e., |s| = m. The length l of a sequence s = ⟨s1, s2, . . . , sm⟩ is
defined as l = ∑m

i=1 |si|. A sequence sa = ⟨a1, a2, . . . , an⟩ is a subsequence of sb = ⟨b1, b2, . . . , bm⟩, denoted by sa ⊑ sb , if there
exist integers 1 ≤ i1 < i2 < . . . < in ≤ m such that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin . A sequence database S is a set of tuples
⟨sid, s⟩, where sid is a sequence id and s is a sequence. A tuple ⟨sid, s⟩ is said to contain a sequence a, if a is a subsequence
of s. The support of a sequence a in a sequence database S is the number of tuples in the database containing a, i.e.,

supS(a) = |{⟨sid, s⟩|(⟨sid, s⟩ ∈ S) ∩ (a ⊑ s)}|.
Given a positive integer δ as the support threshold, we call a a frequent sequence if supS (a) ≥ δ. Given a sequence

database and the support threshold, the frequent sequential pattern mining problem is to find the complete set of sequential
patterns whose support is larger than the threshold.

We view each action of plan fragments as an itemset, and a plan fragment as a sequence, which suggests plan fragments
can be viewed as a sequence database. Note that in our case an itemset has only one element, and the indices of those in
the subsequence are continuous. We fix a threshold δ and use the SPADE algorithm [53] to mine a set of frequent patterns.
There are many frequent patterns which are subsequences of other frequent patterns. We eliminate these “subsequences”
and keep the “maximal” patterns, i.e., those with the longest length, as the final set of frequent plan fragments F .

Example 4. In Example 3, if we set δ to be 2 and 1, the results are shown below (frequent plan fragments are partitioned
by commas):

Plan Fragments:
#1.“pickup(B) stack(B A) pickup(C) stack(C B)
pickup(D) stack(D C)”
#2.“unstack(C A) putdown(C) pickup(B) stack(B A)
pickup(C) stack(C B)”
Frequent Plan Fragments F (δ = 2):
{pickup(B) stack(B A) pickup(C) stack(C B)}
Frequent Plan Fragments F (δ = 1):
{pickup(B) stack(B A) pickup(C) stack(C B) pickup(D)
stack(D C), unstack(C A) putdown(C) pickup(B) stack(B
A) pickup(C) stack(C B)}

Note that the following frequent patterns are eliminated when δ = 2 (likewise when δ = 1): {pickup(B), stack(B A),
pickup(C), stack(C B), pickup(B) stack(B A), stack(B A) pickup(C), pickup(C) stack(C B), pickup(B)
stack(B A) pickup(C), stack(B A) pickup(C) stack(C B)}.

4.4. Generating final solution

In step 4 of Algorithm 1, we generate the final solution using the sets of causal pairs and frequent plan fragments
generated in the previous steps. We address the procedure concat_frag by Algorithm 3. In Algorithm 3, we scan each causal
pair in L and each frequent plan fragment in F . If a plan fragment contains an action (or both actions) of a causal pair, we
append the plan fragment to the final solution psol and remove all the causal pairs that are satisfied by the new psol . We
repeat the procedure until the solution is found, i.e., L = ∅, or no solution is found, i.e., the procedure returns false.

Algorithm 3. psol = concat_frag(L, F).
input: a set of causal pairs L, and a set of frequent fragments F ;
output: The solution plan psol .
1: while L ̸= ∅ do
2: randomly select a pair ⟨ai, a j⟩ ∈ L;
3: randomly select some f ∈ F , such that:

(ai ∈ f ∨ a j ∈ f) and share(psol , f) = true;
4: if there is no such f , return ⟨⟩;
5: psol = append(psol , f);
6: L = removelinks(psol , L);
7: end while
8: return psol ;

In step 3 of Algorithm 3, we randomly select a plan fragment f such that f contains actions ai and a j and shares a
common action subsequence with psol . Note that the procedure share returns true if psol is empty or psol and f share a
common action subsequence. That is to say, two plan fragments are concatenated only if they have some sort of connection,

8 H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21

Fig. 4. (a) f is concatenated at the end of psol; (b) f is concatenated at the beginning of psol; Part (I) is the maximal action subsequence; Part (II) is the
action subsequence that is different from psol .

which is indicated by common action subsequence. In step 4, we return an empty plan if there is no plan fragment satisfying
a single causal pair f . This is because we require that the output solution should satisfy all the causal pairs L generated
based on a single proposition in the goal (a set of propositions). This is reasonable since the causal pairs L is a subset of
causal pairs generated based on the final correct solution (corresponding to the whole goal). If there is no plan fragment
in the set of frequent fragments F satisfying one of the causal pair in L, we can conjecture that no desired solution will
be found based on fragments F . That is why we output an empty solution when there is no plan fragment satisfying a
single causal pair, without considering the remaining pairs in L. In step 5 of Algorithm 3, we concatenate psol and f based
on their maximal common action subsequence, which is viewed as the strongest connection between them. Note that the
common action subsequence should start from the beginning of psol or end at the end of psol . In other words, f can be
concatenated at the end of psol or at the beginning, as is shown in Fig. 4. In step 6 of Algorithm 3, the procedure removelinks
removes all causal pairs in L that are “satisfied” by psol . Example 5 demonstrates how this procedure works.

Example 5. In Example 4, we have two frequent plan fragments by setting δ = 1. We concatenate them with causal pairs in
Example 1. The result is shown as follows.

fragment 1: pickup(B) stack(B A) pickup(C)
stack(C B) pickup(D) stack(D C)
fragment 2: unstack(C A) putdown(C) pickup(B)
stack(B A) pickup(C) stack(C B)
result: unstack(C A) putdown(C) pickup(B) stack(B
A) pickup(C) stack(C B) pickup(D) stack(D C)
solution: unstack(C A) putdown(C) pickup(B)
stack(B A) pickup(C) stack(C B) pickup(D)
stack(D C)

The boldfaced part is the actions shared by fragments 1 and 2. The concatenating result is shown in the third row. After
concatenating, we can see that all the causal pairs in L are satisfied and will be removed according to step 6 of Algorithm 3.
The result is shown in the fourth row.

4.5. Discussion

The ML-CBP algorithm mainly functions by two steps: generating a skeletal plan (Algorithm 2) and refining the skeletal
plan with frequent plan fragments (Algorithm 3) to produce the final solution. The first step aims to guide a plan to reach
the goal by a skeletal plan (or a set of causal pairs), while the second step aims to fill “details” in the skeletal plan. We
are aware that there might be “negative interactions” plan fragments that delete goals that have been reached by previous
plan fragments and lead to failure solutions as a result. However, in step 3 of Algorithm 1, we filter these negative plan
fragments by setting a frequency threshold, assuming negative plan fragments have low frequencies. Furthermore, when
concatenating selected frequent fragments, we consider the maximally shared common actions between fragments, which
indicates strongest connections of fragments, to further reduce the impact of negative fragments.

H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21 9

We note that ML-CBP does not check whether the solution is correct with respect to the incomplete model. As men-
tioned in the problem definition section, the rationale for this is that correctness with respect to the incomplete domain
model is neither a necessary nor a sufficient condition for the correctness with respect to the (unknown) complete model.
Indeed, enforcing the satisfaction with respect to incomplete domains can even prune correct solutions in some scenarios.
For example, a precondition p of action ai in a correct solution may not be added by any previous action a j (assuming p
is not in the initial state) since p is missing in the add lists of all a j . In the other hand, directly taking a similar solution
from the plan library as the solution to the target problem, as done by OAKPlan without the repair phase, is improper in
the sense that the target problem is not exactly the same as any of the plan library.

5. The RIM approach

Our RIM approach consists of two phases. In the first phase, we learn macro-operators and action models with the
given plan cases C and the incomplete domain M̃. In the second phase, we exploit the learned macro-operators and action
models in solving new planning problems. In the subsequent subsections, we first address the learning phase in detail, and
then describe the planning phase briefly.

Our learning framework (the first phase) can be found in Algorithm 4. It begins with the step of collecting sets of
predicates P , action schemas A and macro-operator schemas O from incomplete action models Ã and plan cases C . In the
next two steps, it constructs sets of soft and hard constraints to ensure that the learned domain model can best explain
the input plan cases and incomplete action models. Finally, we solve these constraints using a weighted MAX-SAT solver to
obtain sets of macro-operators and (refined) action models.

Algorithm 4. Phase I: refining domain models.
Input: incomplete action models Ã, and plan cases C.
Output: macro-operators O and action models A.
1: build sets of predicates, action schemas and macro-operator schemas: (P , A, O) = build_schemas(Ã, C);
2: build soft constraints: state constraints, pair constraints;
3: build hard constraints: macro constraints, action constraints, plan constraints and incompleteness constraints;
4: solve all constraints, and build O and A;
5: return O and A;

5.1. Generating predicates, action and macro-operator schemas

It is straightforward to construct the set of predicates P . We first collect all predicates R̃ used in the given incomplete
action models Ã, and view them as the initial set of predicates P . We then scan each proposition in plan cases and put
its corresponding predicates (by replacing parameters of the proposition with variables) in P if it is not in P . Likewise, we
build a set of action schemas A by scanning all the incomplete action models and plan cases.

There are no easy ways to construct macro-operator schemas, since they neither exist in the plan cases nor in the
incomplete action models. We propose to construct macro-operator schemas with the help of frequent pattern mining
techniques and incomplete action models. In particular, we consider an action subsequence that satisfies the following two
conditions to be a macro-operator schema:

1. It frequently occurs in plan cases, the insight of which implicitly suggests they are more likely to be used in future
problem solving;

2. Its actions have strong connections with each other with respect to incomplete action models, which suggests these
actions are more likely to be successfully executed (i.e., with respect to the complete domain model).

Note that we define the strength θ(o) of a macro-operator o as

θ(o) = #supported_preconditions
#preconditions

,

where #supported_preconditions is the number of preconditions supported by some actions in o, and #preconditions is the
total number of preconditions of actions in o.

Any action subsequence can be considered a macro-operator schema. However, learning too many macro-operators is
costly. We thus choose to eliminate those with low frequency or strength by setting a support constant δ for frequency
and a threshold θ for strength. We borrow the notion of frequent patterns defined in [53,42] to mine the frequent action
subsequences, as done by Section 4.3. We convert the set of plan cases to a sequence database in order to make use of
the frequent pattern mining algorithm for extracting macro-operators. Given that different action instances with the same
action name share the same model description (i.e., preconditions/effects), we view each action name (parameters omitted)
in plan cases as an itemset, which has only one element, and a plan case as a sequence. The set of plan cases can now be

10 H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21

Table 1
The example macro-operator schemas.

(:macro macro1
(:parameters ?x - block ?y - block ?z - block)
(:actions (putdown ?x) (unstack ?y ?z) (stack ?y ?x)))

(:macro macro2
(:parameters ?x - block ?y - block ?z - block ?w - block)
(:actions (putdown ?x) (unstack ?y ?z) (stack ?y ?w)))

viewed as a sequence database. In addition, we restrict the indices of itemsets of the mined frequent subsequence to be
continuous. In this way, we can exploit a frequent pattern mining algorithm, such as SPADE [53], to mine a set of frequent
action subsequences.

Furthermore, after mining a set of frequent action subsequences, we consider the parameter constraints of actions. For
example, consider frequent action subsequence “putdown unstack stack”. There may be two scenarios in two differ-
ent plan cases, which are “(putdown A)(unstack B C)(stack B A)” and “(putdown a)(unstack b c)(stack b d)”.
These two subsequences should not be seen as the same macro-operator, since they represent different meanings. Specif-
ically, the first scenario produces an effect “(on B A)”, while the second scenario produces an effect “(clear a)”. Note
that objects “A” and “a” are two instances of the same variable, likewise for other objects. As such, we consider these two
scenarios as two macro-operator schemas, as shown in Table 1.

To sum up, we perform the following three steps to generate macro-operator schemas:

1. We first mine a set of subsequences F from C , whose frequencies are larger than the preset support constant δ,
neglecting the parameters of actions in C .

2. We then take the parameters of actions in F into consideration, obtaining a new set of action subsequences with
corresponding parameters. We eliminate parameterized subsequences whose frequencies are smaller than δ and whose
strengths are larger than the preset constant θ , resulting in a new set of frequent subsequences F ′ .

3. Finally, we build macro-operator schemas O from action subsequences in F ′ with all corresponding parameters. As
mentioned above, Table 1 shows example macro-operator schemas constructed from action subsequences “(putdown
?x)(unstack ?y ?z)(stack ?y ?x)” and “(putdown ?x)(unstack ?y ?z)(stack ?y ?w)”.

5.2. Building soft constraints

The next step in RIM enforces several constraints on all possible complete precondition and effect descriptions of actions
and macro-operators using the inputted incomplete action models. These constraints are designed to be soft, directing the
MAX-SAT algorithm towards learning the most probable complete description of actions and macro-operators.

5.2.1. State constraints
We first build soft constraints encoding possible preconditions and effects of actions and macro-operators implied by

state transitions in plan cases. We preprocess plan cases using incomplete action models to obtain more state information
for building state constraints. To do this, we simply “execute” each plan case starting from its initial state, and calculate (in-
complete) states between actions using incomplete action models. In particular, given a plan case t = ⟨s0, a1, . . . , sn−1, an, g⟩,
we execute t from s0 using the incomplete action models Ã, and calculate states si as follows:

si = ÃDD(ai) ∪ P̃RE(ai+1) ∪ D̃EL(ai+1).

Note that in defining si we do not consider information from previous states s j (j < i) due to the incompleteness of mod-
els (i.e., we cannot determine whether propositions in previous states are deleted by their next actions when propositions
are not in the delete lists of these actions).3 We also assume that actions do not delete propositions that are nonexistent,
i.e., if p ∈ D̃EL(ai+1), p should be in ai+1’s previous state si . We denote the resulting set of plan cases by C′ .

By observation, in C′ we find that if a predicate frequently appears before an action or macro-operator is executed, and
its parameters are also parameters of the action or operator, then the predicate is likely to be its precondition. Similarly, if
a predicate frequently appears after an action or operator is executed, it is likely to be one of its effects. We encode this
information in the form of state constraints as follows4:

1. For each predicate p in the state where action a is executed and PARA(p) ⊆ PARA(a), we have p ∈ PRE(a).
2. For each predicate p in the state where operator o is applied and PARA(p) ⊆ PARA(o), we have p ∈ PRE(o).

3 An alternative approach that more fully exploits the partial model, that we hope to investigate in future, is to allow previous state information, but
make the weight of the persisting conditions to be lower than the immediate conditions.

4 We denote PARA(p), PARA(a) and PARA(o) as the set of parameters involed in predicate p, action a and macro-operator o.

H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21 11

3. For each predicate p in the state after action a is executed and PARA(p) ⊆ PARA(a), we have p ∈ ADD(a).
4. For each predicate p in the state after operator o is applied and PARA(p) ⊆ PARA(o), we have p ∈ ADD(o).

We denote the set of the above constraints by SC. We scan all plan cases in C′ and count the occurrences of each
constraint in C′ . We assign the number of occurrences as the weight of the corresponding constraint.

5.2.2. Pair constraints
It is likely that actions that frequently occur together have intimate relationships, such as one action providing conditions

for its next action. We would like to capture this information to help learn action models.
Let α(o) = ⟨a1, . . . , an⟩ be an action sequence of macro-operator o ∈ O . Since ⟨a1, . . . , an⟩ frequently occur together, as

presented in Step 1 of Algorithm 4, ai is likely providing conditions for ai+1 (0 < i < n), whose parameters are included
by both ai and ai+1. We formulate the idea with the following constraints: for each predicate p, if PARA(p) ⊆ (PARA(ai) ∩
PARA(ai+1)), then p ∈ ADD(ai) ∧ p ∈ PRE(ai+1).

We call these constraints pair constraints. The weights of these constraints are the frequencies the macro-operators,
computed when building macro-operator schemas.

5.3. Building hard constraints

In this subsection, we enforce a set of hard constraints that must be satisfied by action models and macro-operators.

5.3.1. Macro constraints
Given action sequence α(o) = ⟨a1, . . . , an⟩ of o and models of each action ai , we require that preconditions of o should

provide sufficient conditions for executing all actions ai ; effects of o should include those that are created and not deleted
by the action sequence. That is to say, the following constraints should hold:

1. For each action ai and predicate p, if p ∈ PRE(ai) and there is no action a j prior to ai that adds p, then p ∈ PRE(o)

holds.
2. For each action ai and predicate p, if p ∈ ADD(ai) and there is no action a j after ai that deletes p and p /∈ PRE(o), then

p ∈ ADD(o) holds.
3. For each action ai and predicate p, if p ∈ DEL(ai) and there is no action a j after ai that adds p and p ∈ PRE(o), then

p ∈ DEL(o) holds.

5.3.2. Action constraints
To make sure that the learned action models are consistent with the STRIPS language, we further enforce some con-

straints, called action constraints, on different actions. We formulate the constraints as follows [52] and denote them by
AC:

1. An action may not add a fact (instantiated atom) which already exists before the action is applied. This constraint can
be encoded as:

p ∈ ADD(a) ⇒ p /∈ PRE(a).

2. An action may not delete a fact which does not exist before the action is applied. This constraint can be encoded as:

p ∈ DEL(a) ⇒ p ∈ PRE(a).

5.3.3. Plan constraints
We require that the action models learned do not violate the correctness of plan cases. This requirement is imposed on

the relationship between ordered actions in plan cases, ensuring that the causal links in the plan cases are not broken. That
is, for each precondition p of an action a j in a plan case, either p is in the initial state, or there is an action ai (i < j) prior
to a j that adds p and there is no action ak (i < k < j) between ai and a j that deletes p. We formulate the constraints as
follows and denote them by PC:

∀
p∈PRE(a j)

{
p ∈ s0 ∧ ∀

0<k< j
p /∈ DEL(ak)

}
,

or

∀
p∈PRE(a j)

{
∃

0<i< j
[p ∈ ADD(ai) ∧ ∀

i<k< j
p /∈ DEL(ak)]

}
.

12 H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21

5.3.4. Incomplete model constraints
Finally, we enforce constraints ensuring that preconditions and effects in the given action models, though incomplete,

are correctly specified. In other words, for each action a ∈ A and predicate p, we have

p ∈ P̃RE(a) → p ∈ PRE(a),

and

p ∈ ÃDD(a) → p ∈ ADD(a),

and

p ∈ D̃EL(a) → p ∈ DEL(a).

To make sure these constraints are hard, we assign a large enough weight, denoted by wmax , to these constraints. In our
experiment, we simply chose the maximal weight of state constraints and macro constraints as the value of wmax .

5.4. Solving constraints

We put all constraints together and solve them with a weighted MAX-SAT solver [32]. We exploit MaxSatz [32] to solve
all the hard constraints, and attain a true or false assignment to maximally satisfy the weighted constraints. Given the
solution assignment, the construction of macro-operators O and action models A is straightforward; e.g., if “p ∈ ADD(a)” is
assigned true in the result of the solver, p will be converted into an effect of a.

5.5. Phase II: solving planning problems

With the macro-operators and action models learned, we can easily solve new planning problems using planners, such
as FF5 [24,25]. We view each macro-operator as a special action model during planning, neglecting its corresponding action
sequence. We make a minor modification to FF to make it prefer applying macro-operators during searching. Macros in the
plan returned will then be replaced by corresponding action subsequences, resulting in the solution for problem P̃ .

6. Experiments

In this section we present an extensive empirical evaluation. In the following, we describe the experimental setup, and
then discuss the results of our experiments.

6.1. Dataset and criterion

We evaluate ML-CBP and RIM in five planning domains: Blocks,2 Driverlog,6 Depots,6 Child-Snack7 and Barman,7 which
are briefly introduced as follows.

• Blocks: The objects in the domain include a finite number of cubical blocks, and a table large enough to hold all of
them. Each block is on a single other object (either another block or the table). For each block, either it is clear or else
there is a unique block a sitting on it. There is one kind of action: move a single clear block, either from another block
onto the table, or from an object onto another clear block. As a result of moving block b from c onto d, b is sitting on
d instead of c, c is clear (unless it is the table), and d is not clear (unless it is the table) [19].

• Driverlog: This domain has drivers that can walk between locations and trucks that can drive between locations. Walk-
ing requires traversal of different paths from those used for driving, and there is always one intermediate location on
a footpath between two road junctions. The trucks can be loaded or unloaded with packages (with or without a driver
present) and the objective is to transport packages between locations, ending up with a subset of the packages, the
trucks and the drivers at specified destinations.

• Depots: The domain consists of actions to load and unload trucks, using hoists that are available at fixed locations. The
loads are all crates that can be stacked and unstacked onto a fixed set of pallets at the locations. The trucks do not hold
crates in a particular order, so they can act like a table in the Blocks domain, allowing crates to be reordered.

• Child-Snack: This domain is to plan how to make and serve sandwiches for a group of children in which some are
allergic to gluten. There are two actions for making sandwiches from their ingredients. The first one makes a sandwich
and the second one makes a sandwich taking into account that all ingredients are gluten-free. There are also actions to
put a sandwich on a tray and to serve sandwiches. Problems in this domain define the ingredients to make sandwiches
at the initial state. Goals consist of having all kids served with a sandwich to which they are not allergic.

5 http :/ /fai .cs .uni-saarland .de /hoffmann /ff .html.
6 http :/ /ipc02 .icaps-conference .org.
7 https :/ /helios .hud .ac .uk /scommv /IPC-14 /domains _sequential .html.

H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21 13

• Barman: In this domain there is a robot barman that manipulates drink dispensers, glasses and a shaker. The goal is to
find a plan of the robot’s actions that serves a desired set of drinks. In this domain deletes of actions encode relevant
knowledge given that robot hands can only grasp one object at a time and given that glasses need to be empty and
clean to be filled.

In each domain, we generate 400 plan cases using a classical planner such as FF and solve 100 new planning problems
based on different percentages of completeness of domain models. For example, we use 4

5 to indicate one predicate is
missing among five predicates of the domain. We generate new problems and plan cases using problem generators with a
random number of objects, respectively. The random number was set from 10 to 50. Note that objects (or object symbols)
used in plan cases are completely different from those used in testing problems; thus plan cases and new problems do not
share common propositions.

We measure the accuracy of ML-CBP and RIM as the percentage of correctly solved planning problems. Specifically, we
exploit ML-CBP (or RIM) to generate a solution to a planning problem, and execute the solution from the initial state to the
goal. If the solution can be successfully executed starting from the initial state, and the goal is achieved, then the number
of correctly solved problems is increased by one. The accuracy, denoted by λ, can be computed by λ = Nc

Nt
, where Nc is the

number of correctly solved problems, and Nt is the number of total testing problems. Note that when testing the accuracy
of ML-CBP and RIM, we assume that we have complete domain models available for executing generated solutions.

In the following subsections, we evaluate ML-CBP and RIM in the following aspects:

1. We compare ML-CBP and RIM to state-of-the-art case based planning algorithm OAKPlan to see the advantages/disad-
vantages of ML-CBP, RIM and OAKPlan, with respect to different number of plan cases.

2. We also compare ML-CBP, RIM and OAKPlan to see the impact of completeness of action models.
3. To see the impact of threshold in ML-CBP and RIM, we compare ML-CBP and RIM by varying the value of threshold

from 5 to 25.
4. To see the advantage of learnt macro-operators in RIM, we compare RIM to ARMS by varying the number of plan cases.
5. To see the efficiency of ML-CBP and RIM, we show the running time of both ML-CBP and RIM with respect to different

number of plan cases.

6.2. Performance of ML-CBP, RIM and OAKPlan w.r.t. plan cases

We compared ML-CBP and RIM to the state-of-the-art case-based planning system OAKPlan [44]. All the three algo-
rithms are given the same (incomplete) model as their input. We note that OAKPlan, like most recent case-based planners,
assumes a complete model (and is thus more of a plan reuse system rather than a true case-based planning system).
Nevertheless, given that it is currently considered the state-of-the-art case-based planner, we believe that comparing its
performance with ML-CBP and RIM in the context of incomplete models is instructive as it allows us to judge them with
respect to the original motivation for case-based planning–which is to make up for the incompleteness of the model with
the help of cases. We set the percentage of completeness to be a modest value, i.e., 60%, and the threshold δ to be 15 which
was verified to be the value with the best performance (as shown in Table 2) for both ML-CBP and RIM, and the threshold
for strength of all macro-operators θ to be a modest value, i.e., 0.25, for RIM. Note that δ is a threshold of frequency of
action subsequences to filter action subsequences with low frequency, as defined in Section 4.3, and θ is a threshold of
strength of macro-operators to filter macro-operators, as defined in Section 5.1. We varied the number of plan cases from
40 to 400 and run ML-CBP and RIM to solve 100 planning problems. Fig. 5 shows the accuracy λ with respect to the
number of plan cases used.

From Fig. 5, we found that accuracies of ML-CBP, RIM and OAKPlan generally became larger when the number of plan
cases increased. This is consistent with our intuition, since there is more knowledge to be used when plan cases become
larger. We also found that both ML-CBP and RIM generally had higher accuracy than OAKPlan in all the five domains. This
is because ML-CBP (or RIM) exploits the information of incomplete models to mine multiple high quality plan fragments,
i.e., ML-CBP (RIM) integrates the knowledge from both incomplete models and plan cases, which may help each other, to
attain the final solution. In contrast, OAKPlan first retrieves a case, and then adapts the case using the inputted incomplete
model, which may fail to make use of valuable information from other cases (or plan fragments) when adapting the case.

Comparing the curves of ML-CBP and RIM, we can see that the accuracy of ML-CBP is generally smaller than RIM at the
beginning, and becomes larger than RIM as the number of cases increases (e.g., larger than 140). The rationale behind this
result is that ML-CBP solves model-lite planning problems based on aligning plan fragments (rather than action models,
as done by RIM). The higher quality the plan fragments are of, the larger the accuracy of ML-CBP is. Since the quality of
plan fragments is dependent on the number of plan cases, it sharply increases when the number of plan cases increases.
In contrast, RIM is less dependent on the number of plan cases (more reliant on action models) compared to ML-CBP. The
curve of ML-CBP thus rises more sharply than RIM when the number of plan cases increases. From Fig. 5 we observe that
the accuracy of ML-CBP is generally larger than RIM after 140 in the first three domains (after 240 in the last two domains,
i.e., child-snack and barman). From the trends of the curves we can see that the accuracy of RIM will not be able to catch up
ML-CBP in all five domains. By observation, we also find that the accuracy of ML-CBP (or RIM) is no less than 0.8 when

14 H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21

Fig. 5. Accuracy w.r.t. number of plan cases.

the number of plan cases is more than 160 in domains blocks, driverlog, depots, and child-snack (it is no less than 0.7 when
the number of plan cases is more than 240 in domain barman).

6.3. Performance of ML-CBP, RIM and OAKPlan w.r.t. percentage of completeness

To test the change of accuracies with respect to different degrees of completeness, we varied the percentage of com-
pleteness from 20% to 100%, and ran ML-CBP with 200 plan cases by setting δ = 15. We also compared the accuracy with
OAKPlan. The result is shown in Fig. 6.

We found that all accuracies of ML-CBP, RIM, and OAKPlan increased when the percentage of completeness increased,
due to more information provided when the percentage increasing. This is consistent with our intuition, since the more
the information is provided, the more the knowledge is available for helping improve the accuracies. When the percentage
is 100%, ML-CBP, RIM and OAKPlan can solve all the solvable planning problems successfully, since all planning problems
can be solved similar to classical planning by all three systems given the action models are fully specified. Similar to Fig. 5,

H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21 15

Fig. 6. Accuracy w.r.t. percentage of completeness.

both ML-CBP and RIM perform better than OAKPlan. The reason is similar to Fig. 5, i.e., simultaneously exploiting both
knowledge from incomplete domain models and plan cases could be helpful.

Looking at the curves of ML-CBP and RIM, we can see that ML-CBP performs better than RIM at the beginning
(e.g., percentage smaller than 60% in domains blocks and driverlog), but becomes worse than RIM when the percentage
of completeness increases. This fact reveals that the case-based approach, i.e., ML-CBP, performs much better than the
model-based approach, i.e., RIM, when the percentage of completeness of action models is small. The rationale behind this
fact is that, since the model-based approach (i.e., RIM) solves the model-lite planning problems directly based on learnt
action models (and macro-operators as well), the higher the quality of the input action models are (which largely influences
the quality of the learnt action models), the better the accuracy of the model-based approach is. On the other hand, the
case-based approach (i.e., ML-CBP) solves the model-lite planning problems based on aligning plan fragments instead of
the learnt action models, which in some sense indicates the case-based approach is less dependant on the completeness of
input action models compared to the model-based approach. This is why the curve of the case-based approach ML-CBP less
sharply increases than the model-based approach RIM when the completeness of action models increases. From Fig. 6 we
can see that the accuracy of RIM generally becomes better than ML-CBP after the completeness of action models exceeds
60%.

16 H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21

Table 2
Accuracy with respect to different thresholds.

Threshold Blocks Driverlog Depots Child-snack Barman

ML-CBP δ = 5 0.80 0.78 0.73 0.82 0.69
δ = 15 0.88 0.84 0.79 0.82 0.74
δ = 25 0.83 0.75 0.80 0.78 0.72

RIM δ = 5 0.87 0.81 0.76 0.76 0.71
δ = 15 0.91 0.89 0.86 0.83 0.73
δ = 25 0.81 0.78 0.84 0.81 0.75

Fig. 7. Comparison between ARMS and RIM.

By observing all five domains in Fig. 6, we found that ML-CBP and RIM perform much better when the percentage was
smaller. This indicates that exploiting multiple plan fragments, as ML-CBP and RIM do, plays a more important role when
the percentage is smaller. OAKPlan does not consider this factor, i.e., it still retrieves only one case.

H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21 17

Fig. 8. The running time of ML-CBP, RIM, OAKPlan, ARMS.

6.4. Impact of thresholds in ML-CBP and RIM

We tested different support thresholds to see how they affected the accuracy. We set the completeness to be 60% and
the number of plan cases to be 200. The result is shown in Table 2. The bold parts indicate the highest accuracies. We found
that the threshold could not be too high or too low, as was shown in domains blocks and driverlog. A high threshold may
incur false negative, i.e., “good” plan fragments are excluded when mining frequent plan fragments in step 3 of Algorithm 4.
In contrast, a low threshold may incur false positive, i.e., “bad” plan fragments are introduced. Both of these two cases may
reduce the accuracy. We can see that the best choice for the threshold could be 15 (the accuracies of δ = 15 and δ = 25 are
close in depots and Barman).

6.5. Impact of the learnt macro-operators in RIM

To see the benefit we get from the learnt macro-operators, we compare RIM and ARMS like this: we first learn macro-
operators and action models using RIM and solve 100 new planning problems using the learnt models; we then learn
action models using ARMS and solve the same 100 planning problems with the learnt action models. Note that since ARMS

18 H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21

Fig. 9. The running time of ML-CBP and the “planning” time of RIM.

constructs action models from only plan cases, we also assume empty action models in using RIM. Thus, the only difference
is that RIM learns both action models and macro-operators to further support robust plan synthesis. The threshold δ was
set to be 15 and the completeness was set to be 60%.

Fig. 7 shows the accuracies of the two approaches. We can see that the accuracies of RIM are generally better than ARMS,
which suggests that the learned macro-operators indeed help solve new planning problems. This is because macro-operators
with high frequencies contribute helpful information for searching correct actions. We can also find that as expected, when
the number of plan cases increases, the accuracies are also getting higher. This is consistent with our intuition, since the
more plan cases we have, the more information is available for learning high-quality domain models (including both macro-
operators and action models), and thus helpful for solving new planning problems. It is likely that RIM may produce longer
solutions because of its preferences for using macro-operators. However, in the experiments we observe that the aver-
age length of solutions of RIM is not significantly higher, compared to not using macro-operators. For example, consider
using 240 plan cases for learning in the blocks domain. The average length of solutions is 19 when using action mod-
els learnt by ARMS; while the average length of solutions (to the same problems as solved by ARMS) is 22 when using
preferences of macro-operators learnt by RIM. This is reasonable given that the plans with macro-operators have higher
quality.

H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21 19

Fig. 10. The fit polynomial of running time of ML-CBP for blocks.

6.6. Running time

We show the average CPU time of ML-CBP, RIM, OAKPlan and ARMS over 100 planning problems with respect to
different number of plan cases in Fig. 8. We set the completeness of domain models to be 60% and the threshold to be
15. The running time of RIM shown in Fig. 8 includes both phases, i.e., the learning and planning phases. As expected, the
running time for ML-CBP, RIM, OAKPlan and ARMS increase as the number of input plan cases increase. Moreover, the total
running time of RIM is larger than ML-CBP in all five domains. We note that this time includes the time RIM takes to
refine the model, as well as the time it takes to use the model in solving problems. The running time of ARMS is larger than
ML-CBP and less than RIM. This is because RIM takes more running time to learn additional macro operators compared
to ARMS that just learns action models. Similar to RIM, compared to ML-CBP, ARMS needs more running time to refine
action models. In addition, we can see that OAKPlan takes the least running time of all four algorithms. This is because
OAKPlan does not spend running time to integrate multiple plan fragments or refine domain models, compared to other
three algorithms.

One important difference between ML-CBP and RIM is that the model-learning phase of RIM is done just once, and the
resulting model is used for solving any number of new problems. In contrast, ML-CBP doesn’t have any setup costs and thus
its run time is proportional to the number of new problems to be solved. To put this difference in clearer perspective, we
also recorded time cost of the planning phase of RIM, assuming the learning phase was done once and applied for solving
all 100 planning problems. An average of the time cost is shown in Fig. 9. Note that the running time of ML-CBP is the
same as Fig. 8. From Fig. 9 we can see that time cost of the planning phase in RIM is very low comparing to ML-CBP. This
is because the knowledge (the model of macro-operators and actions) needed for planning has been done by the learning
phase. These results suggest that RIM can win over ML-CBP in terms of runtime, as the number of new problems to be
solved increases.

As can be seen from the figure, the running time (of both ML-CBP and RIM) increases polynomially with respect to the
number of input plan cases. This can be verified by fitting the relation between the number of plan cases and the running
time to a performance curve with a polynomial of order 2 or 3. For example, the fit polynomial of ML-CBP for blocks is
−0.0008x2 + 0.9868x − 62.4000, whose curve is shown in Fig. 10.

7. Conclusion

In this paper, we considered the problem of generating robust and accurate plans, when the agent only has access
to incomplete domain models, supplanted by a set of successful plan cases. We presented two novel approaches for the
problem. ML-CBP is a case-based approach that leverages the incomplete model and the plan cases to solve a new problem
directly by affecting case-level transfer. RIM is a model-based approach that uses the incomplete model and the plan cases
to first learn a more complete model. This model contains both primitive actions as well as macro-operators that are derived
from the plan cases. The learned model is then used in conjunction with an off-the-shelf planner to solve new problems.
We argued that both ML-CBP and RIM go beyond existing case-based planning approaches, and action model learning
approaches. We presented a comprehensive evaluation of the two approaches, both to characterize their relative tradeoffs,
and to quantify their advances over existing approaches. For the former, we focused on how the number of available cases
and the degree of incompleteness of the input model affect the relative performance of ML-CBP and RIM. For the latter,
we compared ML-CBP to OAKPlan, an off-the-shelf state of the art case-based planner, and RIM to ARMS, an off-the-shelf

20 H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21

action model learning system. We believe that the insights from this work would be valuable to the planning community,
given the increasing interest in supporting planning in scenarios where complete models are not available.

Acknowledgements

We thank Dr. Tuan Nguyen for the discussion on comparing case-based and model-based approaches. Hankz Hankui
Zhuo thanks the National Key Research and Development Program of China (2016YFB0201900), National Natural Science
Foundation of China (U1611262), Pearl River Science and Technology New Star of Guangzhou, and Guangdong Province Key
Laboratory of Big Data Analysis and Processing for the support of this research. Kambhampati’s research is supported in part
by the ONR grants N00014-16-1-2892, N00014-13-1-0176, N00014-13-1-0519 and N00014-15-1-2027.

References

[1] R. Alterman, An adaptive planner, in: Proceedings of AAAI, 1986, pp. 65–71.
[2] E. Amir, Learning partially observable deterministic action models, in: Proceedings of IJCAI, 2005, pp. 1433–1439.
[3] F. Bacchus, Q. Yang, The downward refinement property, in: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, 1991,

pp. 286–292.
[4] R. Bergmann, W. Wilke, Building and refining abstract planning cases by change of representation language, J. Artif. Intell. Res. 3 (1995) 53–118.
[5] P. Bertoli, M. Pistore, P. Traverso, Automated composition of web services via planning in asynchronous domains, Artif. Intell. 174 (3–4) (2010) 316–361.
[6] J. Blythe, E. Deelman, Y. Gil, Automatically composedworkflows for grid environments, IEEE Intell. Syst. 19 (4) (2004) 16–23.
[7] B. Bonet, H. Geffner, Planning with incomplete information as heuristic search in belief space, in: Proceedings of the Fifth International Conference on

Artificial Intelligence Planning Systems, Breckenridge, CO, USA, April 14–17, 2000, 2000, pp. 52–61.
[8] D. Borrajo, A. Roubíčková, I. Serina, Progress in case-based planning, ACM Comput. Surv. 47 (2) (Jan. 2015) 35:1–35:39.
[9] A. Botea, M. Enzenberger, M. Muller, J. Schaeffer, Macro-ff: improving AI planning with automatically learned macro-operators, J. Artif. Intell. Res. 24

(2005) 581–621.
[10] D. Bryce, C. Weber, Planning and acting in incomplete domains, in: Proceedings of ICAPS, 2011.
[11] J.G. Carbonell, Learning by analogy: formulating and generalizing plans from past experience, in: R.S. Michalski, J.G. Carbonell, T.M. Mitchell (Eds.),

Machine Learning: An Artificial Intelligence Approach, Springer, Berlin, Heidelberg, 1984, pp. 137–161.
[12] A. Coles, A. Smith, Marvin: a heuristic search planner with online macro-action learning, J. Artif. Intell. Res. 28 (2007) 119–156.
[13] S. Cresswell, T.L. McCluskey, M.M. West, Acquisition of object-centred domain models from planning examples, in: Proceedings of the Nineteenth

International Conference on Automated Planning and Scheduling, ICAPS’09, 2009.
[14] O. Etzioni, S. Hanks, D.S. Weld, D. Draper, N. Lesh, M. Williamson, An approach to planning with incomplete information, in: Proceedings of the 3rd

International Conference on Principles of Knowledge Representation and Reasoning, KR’92, Cambridge, MA, October 25–29, 1992, 1992, pp. 115–125.
[15] C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H.H. Hoos, K. Leyton-Brown, Improved features for runtime prediction of domain-independent planners,

in: Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA,
June 21–26, 2014, 2014.

[16] R.E. Fikes, P.E. Hart, N.J. Niisson, Learning and executing generalized robot plans, Artif. Intell. 3 (1972) 251–288.
[17] A. Gerevini, I. Serina, Fast plan adaptation through planning graphs: local and systematic search techniques, in: Proceedings of the Fifth International

Conference on Artificial Intelligence Planning Systems, Breckenridge, CO, USA, April 14–17, 2000, 2000, pp. 112–121.
[18] P. Gregory, S. Cresswell, Domain model acquisition in the presence of static relations in the LOP system, in: Proceedings of the Twenty-Fifth Interna-

tional Conference on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7–11, 2015, 2015, pp. 97–105.
[19] N. Gupta, D.S. Nau, On the complexity of blocks-world planning, Artif. Intell. 56 (2–3) (1992) 223–254, http://dx.doi.org/10.1016/0004-3702(92)90028-V.
[20] K.J. Hammond, Case-Based Planning: Viewing Planning as a Memory Task, Academic Press, San Diego, CA, 1989.
[21] S. Hanks, D.S. Weld, A domain-independent algorithm for plan adaptation, J. Artif. Intell. Res. 2 (1995) 319–360, http://dx.doi.org/10.1613/jair.79.
[22] R. He, E. Brunskill, E. Brunskill, Puma: planning under uncertainty with macro-actions, in: Proceedings of AAAI, 2010, pp. 1089–1095.
[23] J. Hoffmann, P. Bertoli, M. Pistore, Web service composition as planning, revisited: in between background theories and initial state uncertainty, in:

Proceedings of AAAI, 2007.
[24] J. Hoffmann, B. Nebel, The FF planning system: fast plan generation through heuristic search, J. Artif. Intell. Res. 14 (2001) 253–302.
[25] J. Hoffmann, B. Nebel, What makes the difference between HSP and FF?, in: Proceedings IJCAI-01 Workshop on Empirical Methods in Artificial Intelli-

gence, 2001.
[26] G.A. Iba, A heuristic approach to the discovery of macro-operators, Mach. Learn. 3 (1989) 285–317.
[27] L.H. Ihrig, S. Kambhampati, Derivation replay for partial-order planning, in: Proceedings of the 12th National Conference on Artificial Intelligence,

Seattle, WA, USA, July 31–August 4, 1994, vol. 2, 1994, pp. 992–997.
[28] L.H. Ihrig, S. Kambhampati, Storing and indexing plan derivations through explanation-based analysis of retrieval failures, J. Artif. Intell. Res. 7 (1997)

161–198.
[29] S. Kambhampati, Model-lite planning for the web age masses: the challenges of planning with incomplete and evolving domain theories, in: Proceed-

ings of AAAI, 2007.
[30] S. Kambhampati, J.A. Hendler, A validation-structure-based theory of plan modification and reuse, Artif. Intell. 55 (1992) 193–258.
[31] R.E. Korf, Macro-operators: a weak method for learning, Artif. Intell. 26 (1985) 35–77.
[32] C.M. Li, F. Manya, J. Planes, New inference rules for Max-SAT, J. Artif. Intell. Res. 30 (October 2007) 321–359.
[33] E. Melis, J. Whittle, Internal analogy in theorem proving, in: Automated Deduction – CADE-13, 13th International Conference on Automated Deduction,

Proceedings, New Brunswick, NJ, USA, July 30–August 3, 1996, 1996, pp. 92–105.
[34] D. Morwood, D. Bryce, Evaluating temporal plans in incomplete domains, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,

July 22–26, 2012, Toronto, Ontario, Canada, 2012.
[35] H. Muñoz-Avila, Case-base maintenance by integrating case-index revision and case-retention policies in a derivational replay framework, Comput.

Intell. 17 (2) (2001) 280–294.
[36] H. Muñoz-Avila, D.W. Aha, L. Breslow, D.S. Nau, HICAP: an interactive case-based planning architecture and its application to noncombatant evacuation

operations, in: Proceedings of the Sixteenth National Conference on Artificial Intelligence and Eleventh Conference on Innovative Applications of
Artificial Intelligence, July 18–22, 1999, Orlando, Florida, USA, 1999, pp. 870–875.

[37] H. Muñoz-Avila, M.T. Cox, Case-based plan adaptation: an analysis and review, IEEE Intell. Syst. 23 (4) (2008) 75–81, http://dx.doi.org/10.1109/MIS.2008.
59.

[38] M.H. Newton, J. Levine, M. Fox, D. Long, Learning macro-actions for arbitrary planners and domains, in: Proceedings of ICAPS, 2007, pp. 256–263.

H.H. Zhuo, S. Kambhampati / Artificial Intelligence 246 (2017) 1–21 21

[39] T.A. Nguyen, S. Kambhampati, M.B. Do, Assessing and generating robust plans with partial domain models, in: ICAPS Workshop on Planning Under
Uncertainty, 2010.

[40] M. Oglietti, Understanding planning with incomplete information and sensing, Artif. Intell. 164 (1–2) (2005) 171–208.
[41] D. Olawsky, M. Gini, Deferred planning and sensor use, in: DARPA Workshop on Innovative Approaches to Planning, Scheduling, and Control, Morgan

Kaufmann, 1990.
[42] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, M.-C. Hsu, Mining sequential patterns by pattern-growth: the prefixspan approach,

IEEE Trans. Knowl. Data Eng. 16 (11) (2004) 1424–1440.
[43] R.P.A. Petrick, F. Bacchus, A knowledge-based approach to planning with incomplete information and sensing, in: Proceedings of the Sixth International

Conference on Artificial Intelligence Planning Systems, April 23–27, 2002, Toulouse, France, 2002, pp. 212–222.
[44] I. Serina, Kernel functions for case-based planning, Artif. Intell. 174 (16–17) (2010) 1369–1406.
[45] L. Spalazzi, A survey on case-based planning, Artif. Intell. Rev. 16 (1) (2001) 3–36.
[46] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, Cambridge, Massachusetts, 1998.
[47] A. Torreño, E. Onaindia, O. Sapena, An approach to multi-agent planning with incomplete information, CoRR, arXiv:1501.07256, 2015.
[48] M. Vallati, I. Serina, A. Saetti, A.E. Gerevini, Identifying and exploiting features for effective plan retrieval in case-based planning, in: Proceedings of

ICAPS-15, 2015.
[49] R. van der Krogt, M. de Weerdt, Plan repair as an extension of planning, in: Proceedings of the Fifteenth International Conference on Automated

Planning and Scheduling, ICAPS 2005, June 5–10, 2005, Monterey, California, USA, 2005, pp. 161–170.
[50] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, J. Blythe, Integrating planning and learning: the prodigy architecture, J. Exp. Theor. Artif. Intell.

7 (1) (1995).
[51] T.J. Walsh, M.L. Littman, Efficient learning of action schemas and web-service descriptions, in: Proceedings of the Twenty-Third AAAI Conference on

Artificial Intelligence, AAAI-08, 2008, pp. 714–719.
[52] Q. Yang, K. Wu, Y. Jiang, Learning action models from plan examples using weighted MAX-SAT, Artif. Intell. 171 (February 2007) 107–143.
[53] M.J. Zaki, Spade: an efficient algorithm for mining frequent sequences, Mach. Learn. 42 (2001) 31–60.
[54] L.S. Zettlemoyer, H.M. Pasula, L.P. Kaelbling, Learning planning rules in noisy stochastic worlds, in: Proceedings of AAAI, 2005.
[55] H.H. Zhuo, Crowdsourced action-model acquisition for planning, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January

25–30, 2015, Austin, Texas, USA, 2015, pp. 3439–3446.
[56] H.H. Zhuo, H. Muñoz-Avila, Q. Yang, Learning hierarchical task network domains from partially observed plan traces, Artif. Intell. 212 (2014) 134–157.
[57] H.H. Zhuo, T.A. Nguyen, S. Kambhampati, Model-lite case-based planning, in: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelli-

gence, July 14–18, 2013, Bellevue, Washington, USA, 2013.
[58] H.H. Zhuo, T.A. Nguyen, S. Kambhampati, Refining incomplete planning domain models through plan traces, in: Proceedings of the 23rd International

Joint Conference on Artificial Intelligence, IJCAI 2013, Beijing, China, August 3–9, 2013, 2013, pp. 2451–2458.
[59] H.H. Zhuo, Q. Yang, Action-model acquisition for planning via transfer learning, Artif. Intell. 212 (2014) 80–103.
[60] H.H. Zhuo, Q. Yang, D.H. Hu, L. Li, Learning complex action models with quantifiers and logical implications, Artif. Intell. 174 (18) (2010) 1540–1569.

